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ABSTRACT

In the past, spectral analysis has been done almost

exclusively by analog equipment. The main stumbling block

for digital spectral analysis has been the enormous number of

computations necessary to calculate the spectrum digitally.

This research develops a new algorithm for digital spec-

tral analysis in real time. This new algorithm is intended

for implementation by special-purpose circuitry using cur-

rently available integrated circuits. Maximum sampling rates

above I MHz can be realized in continuous real-time operation.

This is much faster than any other existing algorithm can

operate.

A closed-form analytical expression is developed for the

passband characteristics of the discrete Fourier transform

operation. This expression is used to evaluate in detail the

effectiveness of several time-domain and frequency-domain

operations aimed at improving the passband characteristics.

A hardware design is presented which makes use of certain

novel features of this newreal-time algorithm. Among these

features is the use of shift registers in which only the in-

puts and outputs are available. This permits use of very

long integrated circuit shift registers in very small packages

since very few inputs and outputs are required. This feature

would not be an advantage in realizing this algorithm in a

general-purpose computer, but it definitely is in special-

purpose hardware.
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Chapter I

INTRODUCTION

Spectrum analysis has historically been performed almost

exclusively by analog equipment. Digital equipment has not

been used because of the tremendous number of computations

that must be performed in order to calculate the spectrum.

In 1965 Cooley and Tukey derived a new algorithm which

reduced the number of computations necessary by the factor

of (log 2 n)/n for calculating n spectrum points from n

input samples. This algorithm and its offspring have made

practicable the computation of spectra on large general-

purpose computers. These applications have generally been

either non-real time or real time with very low frequency

components.

A new algorithm is derived here which is suitable for

real-time operation at sample rates exceeding i MHz. This

algorithm is intended for implementation by special-purpose

hardware using integrated circuits. It also features

continuous rather than "batch" processing.

Considerable attention is paid to the passband charac-

teristics of these algorithms. A convenient closed-form

analytic expression is derived for the passband of the basic

Fourier transform algorithm. This expression is used to

evaluate in detail the effectiveness of several time-domain

and frequency-domain operations aimed at improving the pass-

band characteristics.

i SEL-67-099



A hardware design is presented which uses currently

available integrated circuits. The maximum sampling rate

obtainable is determined to be above i MHz. The author feels

that the algorithm and design presented offer the best

solution for rapid real-time spectral analysis.

SEL-67-099 2



Chapter II

SPECTRUMANALYSIS

A. Definition of Spectra

Spectrum as used here will refer to either the voltage

spectrum, the energy spectrum, or the power spectrum of the

input signal. The vo!tage spectrum is the Fourier transform

of the input signal as given by

oo

F(co) = _ f(t) e -i°°t dt (2.1)
--00

The voltage spectrum will in general be complex.

The energy spectrum is obtained simply by taking the

magnitude squared of the voltage spectrum:

--IF(®)12= f(t) e -id°t

2

dt (2.2)

The energy spectrum is purely real.

A problem arises in the use of the energy spectrum since

real signals of unbounded time duration possess energy

spectra which are unbounded. In general, the energy per unit

time, i.e., the power, will be bounded. The power spe.ctrum

can be defined as

I _-i -i_tP(_) = lim _-_ f(t) e

2

dt (2.3)

The power spectrum P(_) is also purely real and in addition

is bounded for most input signals.

3 SEL-67-099



An alternate way of arriving at the power spectrum is

to take the autocorrelation function of the input and then

Fourier transform it:

P(_) : S_. tT-_lim9-_i_T- f(T) f(t + T) d
-i_t

e dt (2.4)

It is apparent that no matter which spectrum is desired

or what path is followed to obtain it, some form of Fourier

transform will be involved.

B. Analog Spectrum Analysis

Spectrum analysis has traditionally been done with

analog equipment. Two basic systems have been used: filter

banks and swept analyzers. The most straightforward approach

is shown in Fig. I. In this system a bank of n tuned band-

pass filters is used. Each filter passes components of the

input signal that lie within a narrow band of frequencies

between _j - A_/2 and _j + A_/2, where _j is the center

frequency of the filter and A_ is its bandwidth. The out-

put of each filter is then squared and averaged to give an

estimate of the signal power at the frequency _j. The

circuitry is repeated n times to give n power spectrum

estimates.

The second approach is illustrated in Fig. 2. In this

system the input signal is mixed with the output of a swept-

frequency oscillator to produce the sum and difference fre-

quencies. The difference frequency is then passed through a

SEL-67-099 4
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bandpass filter, squared, and averaged to produce an estimate

of the power spectrum at a frequency _s + _f' where _s is

the oscillator frequency and _f is the filter frequency.

As the oscillator frequency is varied, the frequency at

which the power spectrum is estimated varies. This analyzer

requires considerably less hardware than the filter-bank

analyzer.

C. Digital Spectrum Analysis

Digital spectrum analysis may be performed in a number

of ways. In all cases, the analog input signal is sampled

and converted into a series of digital numbers. Calculations

must then be performed on these numbers to produce another

series of numbers which represent the spectrum of the signal

being analyzed. The problem lies in being clever enough in

the organization of the calculations that they may be per-

formed in a minimal amount of time by a minimal amount of

hardware.

Weaver, Mantey, Lawrence, and Cole at Stanford University

[1966] have used a set of linear difference equations to

obtain an estimate of the spectrum of the input. The ana-

lyzer they implemented is shown in Fig. 3. Each of the

difference equations is of the form:

y(nT) = aox(nT) + alx[(n-l)T] + ..- + akx[(n-k)T]

-blY[(n-l)T ] - b2Y[(n-2)T] - ... - bmY[(n-m)T]

(2.5)

SEL-67-099 6
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Fig. 3. DIGITAL SPECTRUM ANALYZER USING LINEAR DIFFERENCE

EQUAT IONS.

Since the previous outputs are included as inputs to the

analyzer, long time spans of data can be included in rela-

tively few calculations to yield good resolution in the

frequency domain. Unfortunately the inclusion of previous

outputs also introduces the possibility of instability into

the difference equations. This analyzer is a direct digital

equivalent of the analog filter-bank analyzer.

Other digital spectrum analyzers have been built by

digitally computing a Fourier transform of the input samples.

By and large these analyzers have been realized on general-

purpose digital computers and have been operated in non-real

time. The transform algorithms used have been some form of

7 SEL-67-099



the Cooley-Tukey algorithm or a derivation thereof. These

algorithms "batch-process" the data; that is, computation is

not begun until a batch of n samples is collected. The

processing produces n outputs and then halts until the

next set of n inputs is collected. The batch-process

nature of these algorithms makes them unsuited for continuous

real-time operation.

The present effort also utilizes a digital Fourier trans-

form. However, a new algorithm is derived which permits

efficient real-time operation. The block diagram of the

proposed analyzer is shown in Fig. 4. The analog input

signal f(t) is sampled and converted into a digital number;

these numbers are used in the computation of the Fourier

transform of the input. Finally, the magnitude of the trans-

form is squared to obtain the power spectrum of the input.

The particular algorithm used is especially well suited to

realization by special-purpose hardware built from integrated

circuits.

f(t) J A/D I fs(t)

I CONVERTERI TRANSFORM I
COMPUTATIONI

CIRCUITRY J

F(w)

Flg. 4. REAL-TIME DIGITAL SPECTRUM ANALYZER.

D. Comparison of Analo_ and Di$ital Analyzers

The analog analyzer has historically held the edge in

practical implementation because it has required far less

SEL-67-099 8



hardware than the digital spectru_ analyzer. The analog

analyzers have suffered from problems characteristic of any

analog instrument. In particular, it is difficult to keep

the gain and frequency bands of a large number of analog

filters from drifting with time, temperature, and other

environmental changes. On the other hand, the characteris-

tics of the digital analyzer are completely insensitive to

its environment.

The major stumbling block to the implementation of

digital spectrum analyzers has been the large number of

computations necessary to perform the digital Fourier trans-

form. This problem has been alleviated greatly by the

Cooley-Tukey algorithm which is derived in detail in

Chapter III. Furthermore, the advent of integrated circuits

has made the building of large, special-purpose computational

units a practicable approach. The digital spectrum analyzer

proposed in this research will become even more attractive

as integrated circuit technology progresses.

9 SEL-67-099



Chapter III

DISCRETE FOURIER TRANSFORMS

A. Discrete Fourier Transform EQuations

The basic operation in any spectrum analysis is the

taking of the Fourier transform. In our digital spectr_n

analyzer we will be working with samples of the input taken

every T seconds. The transform we compute will in fact

be the transform of the sampled input rather than the true

input.

The sampling can be represented mathematically as multi-

plication of the input f(t) by an impulse train of period

T •
The resultant fs(t) is given by

oo

fs(t): f(t) - k<) (3.1)

The Fourier transform of the sampled signal is given by

FS(a_) = _ f(t) _ _(t -kT)e -i_t dt
m_

k_

Carrying out the integral yields

(3.2)

Fs(_) = ! f(kT) e -ic°kT (3.3)

Equation (3.3) is the basic equation for the digital

computation of spectra. It involves taking the samples of

the input f(kT), multiplying by a complex number e-i_kT

SEL-67-099 i0



and summing over all the available samples. These operations

must be performed for every desired value of _. Conse-

quently, if we want n points of the spectrum and we have
2

n time samples to work from, we will have to perform n

complex multiplications and additions.

B. Efficient 0peration Grouping

If the operations are grouped appropriately we can make

some savings in the number of operations performed. Let us

look at the problem of calculating n samples of Fs(_ )

evenly spaced between _ = 0 and _ = [(n-l)2_]/nT from

the n input samples of fs(t) from t = 0 to t = (n-l)T.

Equation (3.3) may be written

n-i

Fs(C° = n2_T_) = ! f(kT)exp(-i -_J2_ kT)

k=0

(3.4)

where the equation is to be evaluated for all values of j

from j = 0 to j = n-l.

Let us write the indices j and k as binary numbers

• m-2
J = Jm-i 2m-I + Jm-2 2 + "'" + Jl 2 + J0 (3.5)

k = km_l 2m-I + km_2 2m-2 + ... + k12 + k0 (3.6)

By writing j and k as above we have made the tacit

assumption that the number of samples is less than or equal

to 2m. Let us now shorten our notation in the following

manner:
ii SEL-67-099



nT, : Fs(Jm-l'Jm-2'''''Jl'J0 ) : Fs(J)

f(t = kT) = f(km_l,km_2,...,kl,k0 ) = f(k)

With this shortened notation, Eq. (3.4) can be written

n-i

__ 2m-I

k=O

+ "'" + J0)

• (km_12m-i + ... + k0) ]

(3.8)

(B.9)

The product in the exponential contains powers of 2

between 20 and 22m-2. Let us write this product out in

more detail:

m-i

22m-2 22m-3
Jm-lkm-i + I J2m-3-rkr +

r=m-2

+ 2m+l

m-i m-i

2m
Jm+l-rkr +

r=2 r=l

Jm_rkr

m-I

+ 2m-I

r=0

Jm-l_rkr

m-2

+ 2m-2

r=0

Jm_2_rkr + ...

2 i

+ 22 _ J2_rkr + 2 _

r=0 r=0

Jl_rkr + Joko (3.1o)

SEL-67-099 12



Notice that this product is in the form of powers of 2 with

integer coefficients.

The maximum number of samples we have provided for is

2 m. Let us then take full advantage of our capability by

setting the number of samples n = 2m. Doing this, and

using (3.10), we can expand the exponential of (3,9) as

follows :

exp(-i 2_ jk) exp[-i 2_ (Jm_12m-i +-_- : -_- ... + jo)(km_12m-I + .. + ko) ]

m-I

: exp(-i2_2m-2jm_ikm_l)exp(-127r2 m-3 _ J2m-3-rkr )''"

r=m-2

m-i m-i

• exp(-i2_2 _ Jm+l_rkr ) exp(-i2_ _ Jm_rkr )

r=2 r=l

m-I 2

• exp(-i2_2 -I _ Jm-l-rkr ) ... exp(-i2_22-m _ J2-rkr )

r=O r=O

I

" exp( -i2Tr21-m _. Jl-rkr)exp(-i2_2-mjoko) (3.11)

r=O

The first m-I exponentials in (3.11) are of the form

exp(-i2_p), where p is an integer, and hence are identi-

cally equal bo one. Equation (3.11) may consequently be

greatly simplified to:

13 SEL-67-099



m-i m-2

exp(-i _ Jk) exp(-12_2 -I _ Jm_l_rkr)exp(-±_2-2 _ Jm_2_rkr)_ . ° o

r=O r=O

2 i

• exp(_i2_22-m _ J2-rkr) exp(-12_2 l-m _ Jl-rkr)

r=O r=O

• exp (-i2_2-mJoko) (3.12)

In Eq. (3.12), km_ I appears only in the first exponential;

km_ 2 only in the first two; km_ 3 only in the first three;

etc. Regrouping the exponentials, we have

exp (-i -_--2_Jk) = exp (-i2_km_lJo 2-I) exp [-i2_km_2(Jl 2-I + j02-2)]

• exp[-121rkm_3(J22-1 + J12-2 + J02-3)]

• exp[-12Wkl(Jm_p2-1 + ... + JO2-m+l)]

• exp[-i27rk O(jm_12-1 + ... + JO2-m)] (313)

The expression for the exponential in (3.13) may be put

back into the summation in (3.9) and the summation over k

may be broken into many sums over the individual kr. The

result is

f(k) exp(-i2_km_lJ02-1)}

•

SEL-67-099
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•oxp[i_kl(jm22I

•o_p[i2_ko(Jm121+..÷_o2m)] (3.14)

Each of the variables k being summed upon in Eq. (3.14)
r

has only the value 0 or i, since each is a coefficient of a

power of 2 in the binary number representation of k.

Equation (3.14) may be evaluated by beginning at the

innermos% sum and working outward. Let us arrange the 2m

samples of f(k) in a column in order of ascending values

of the binary number k. These samples are shown in the

left-hand column of Fig. 5 for m = 4, or 16 samples.

Figure 5 is a flow graph for the transform computations.

The innermost sum of (3.14) is over km_ I = O, i and

can be written out as

I

km_l=O

f(k) exp(-i2_km_lJo 2-I)

= f(O,km_2,...,ko) e0 + l,km_2,...,k0) expi_[-i2_J02-1}f(

(3._5)

Thus the inner sum is seen to be a function of the km_2,

km_3,...,k 0 and J0" There will be 2m of these functions

which we will label F(J0,km_2,...,k0). These are shown in

the second column of Fig. 5 arranged in order of ascending

15 SEL-67-099



IIII

III0

II01

II00

I011 fll

I010

1001 f9

I000 f8

0111 fz

0110 f6

0101 f5

0100 f4

0011 f3

0010 f2

0001

0000

i

• 2_Fig. 5 FLOW CHART OF CALCULATIONS FOR n = .
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value of the binary numbers jo 2m-I + km_22m-2 + ... + k020"

The nodes represent the value of the f_ctions and are

arrived at by summing the value of all incoming arrows

multiplied by the value of their respective origins.

The next innermost sum of (3.14) can be expanded as

i

• . ._m2

k m_2 =0

: F(Jo,O,km_3,...,k 0) e0 + F(Jo,l,km_3,...,k0)

•exp -i2_(J12-i + J02-2)] (3.16)

The set of equations (3.16) gives the transition between

column 2 and column 3 of Fig. 5.

C. Rules for Constructing Flow Charts

The continued expansion of Eq. (3.14) will result in a

completed figure of the form of Fig. 5. The following

general rules may be deduced for a generalized figure using

2m time samples to obtain 2m frequency samples:

•

.

A figure for 2m

2m points each.

The points of the first column will be the original

time samples arranged in order of the magnitude of

km_l 2m-1 + km_22m-2 + ... +their arguments:

k12 + k O.

samples will have m+l columns of

17 SEL-67-099



3. The points of the second column will be points of an

array

of the

F(Jo,km_2,...,kl,ko). In general, the points
th

r column will be points of an array

F(Jo,Jl,...,jr_2,km_r,km_r_l,...,kl,ko), arranged

in order of the magnitude of the number jo 2m-I

Jl 2m-2 Jr-2 2m-r+l 2m-r + k+ + ... + + km_ r m-r-1

+ ... + k12 + kO.

th
All arrows leaving points in the r column for

th
which the r index is zero will have weight i and

will go horizontally to points in the (r+l) st

column whose indices are the same, and to points

2m-r-i

th
whose indices are different in the r index only.

th
5. All arrows leaving points in the r column for

•

th
which the r index is i will have weight

[exp -i2_(Jr_l 2-I + jr_22 -2 + . . + jl 2-r+l + jo 2

and will go horizontally to points in the (r+l) st

column whose indices are the same, and to points

th
whose indices are different in the r index only.

Note that the values of the weights are determined

by Jo through Jr-i which are the first r

indices of the destinations of the arrows•

The points in the (m+l) st column will be the points

of the spectrum Fs(Jo,Jl,...,Jm_l)

order of the magnitude of the number

arranged in

jo 2m-I + Jl 2m-2

+ "'" + Jm-22 + Jm-l" Note that the indices Jo

through Jm-i are reversed from their normal order.
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D. Computatignal Savings

It can now be seen that by arranging the computations in

the order described, considerable labor may be saved. In

particular, rule i tells us that we have m2 m points to cal-

culate to obtain the spectrum as opposed to the n 2 = (2m) 2

operations required to calculate the spectrum by direct

application of Eq. (3.4). This computational algorithm was

originally derived by Cooley and Tukey.

In Chapter VIII a new algorithm is derived which is even

better suited to hardware implementation. Although the

number of operations is not reduced, the manner in which

they are performed in real time permits considerable savings

in hardware.

E. Power S_ectra

Up to this point we have been calculating the Fourier

transform of the input waveform. In order to get the power

spectrum of the input, we must take the square of the

magnitude of the voltage transform already calculated. It

is the power spectra rather than the voltage spectra that is

the expected output from a "spectrum analyzer."

The power spectra may be arrived at in two ways. One is

to form the autocorrelation function of the input and take

the transform of the autocorrelation. The other way is to

transform the input to get the voltage spectrum, and then

take the magnitude squared of the voltage spectra to get the
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power spectrum. We will choose the latter route as it will

require far less in the way of additional circuitry.

The output of the real-time Fourier transform algorithm

is a set of n complex numbers. Each of these numbers is

of the form A + iB. The magnitude squared then will be

given by A2 + B2. The squaring can be accomplished by

putting A or B in both the x and y inputs of a multi-

plier such as the one designed in Chapter VI. Getting the

magnitude squared will then require two multipliers and one

adder for each of the n output samples.
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Chapter IV

PASSBANDCHARACTERISTICS

A. Infinite Number of Samples

The result of performing a discrete Fourier transform

yields the transform of the sampled input signal rather than

the transform of the original input.

Figure 6 shows the derivation of the sampled signal's

spectrum in terms of the spectrum of the unsampled signal.

Here it is assumed that the sampling is done by an infinite

string of impulses spaced T seconds apart. The transform

of this string of impulses is another string of impulses in

the frequency domain of area I/(2_T) spaced 2_/T radians

apart. The sampling impulses and their transform are shown

in Fig. 6b. Multiplying by the first string of impulses in

the time domain is equivalent to convolution of the original

frequency spectrum with the infinite string of impulses in

the frequency domain as shown in Fig. 6c. Equations (4.1a)

through (4.1c) describe the operations illustrated in Fig. 6.

The convolution theorem is derived in Appendix A.

f(t ) --4-

oo oo

i 2_ )

(4.la)

(4.ib)
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TIME DOMAIN

f(t}

=-tv

FREQUENCY DOMAIN

F(_)

a. f(t) and its transform F(_)

T. 8(t-k_-) __L :E 8(_-k _-_)
-o0 2w'_" -OD

=-t

b. Sampling impulses and their transform

fs(t)= f(kz') T. 8(t-kz')
-oO

Fs(=)=_.L._ _o4.'T

c. Sampled fs(t) and its transform

Fig. 6. DERIVATION OF SPECTRUM OF SAMPLED f(t).
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fs(t)=
oo

f(t) _ 5(t-
_OO

Fs( )

Fs(*) = 2Tr _ 57 -

_00 _00

oo

1 F(
mOO

As illustrated in Fig. 6c and Eq. (4.1c), Fs(_), the

spectrum of the sampled signal, is the sum of an infinite

number of the original F(_) with their centers spaced 2_/T

apart along the frequency axis. If the spacing 2_/T is

great enough, there will be no overlap of the individual

spectra and the sampling has thus introduced no errors.

B. Finite Number of Samples

Up to now we have been talking about using an infinite

number of samples in the time domain so that the convolution

in the frequency domain is with an infinite string of impulses.

Any finite machine we build must, of course, make calculations

based on only a finite number of time samples. We now

naturally ask what errors are introduced because we don't use

an infinite number of samples.

Figure 7 illustrates the derivation of our finite string

of impulses by which we will multiply our time function f(t)

to get a finite number of samples f(t). F(_) will then be

a convolution of F(_) with the transform of the sampling

function as shown in Fig. 7c.
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TIME DOMAIN

SQUARE ENVELOPE

T= n'r = J

....-,_ I_
.... t

n"E"

FREQUENCY DOMAIN

T exp (-i oj ---_)

v

ujT
2

a. Square envelope and its transform

T_8 (t-k',") Z',r_
--(_D

b. Sampling impulses and their transform

n-I

T. _ (t-kT)
k=O

=--t

• T 2_"
s,n_"(_-k _ )co

z -o[-,[ c,_-,,_)] ,,_4.n-Z "r -o0 T
_(=- )

c. Finite sampling impulse train and its transform

Fig. 7. DERIVATION OF SPECTRUM OF FINITE IMPULSE TRAIN.
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To get a finite number of impulses we take the square

window of Fig. 7a and multiply it by the infinite s_ring of

impulses in Fig. 7b. Note that the window is of width nT

and extends from -c to nT - _ (c being arbitrarily

small) and thus will contain exactly n impulses.

The transform of the square window is

exp[-i_(}- c)]T sin (coT/.2)
_T/2

where for

exp (-i_ }). When we multiply the window and the string of

impulses in the time domain we must convolve

with a string of impulses in the frequency domain.

(%.2b)

The

result is that the transform of our finite sampling function

as shown in Fig. 7c is

n-i

_(t - kT) _---_

k:O g_2T

exp[-i T (do - k _)] T T (co - k 2_) (4.2c)k=-_ 2

_- @ - k = i, a plot of the magnitude

of the transform of our sampling function will look as shown

in Fig. 7c. The spacing between the (sin x)/x functions is
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2_/v. Remembering that T = nT, we find their height is

n/4_ 2 and their width varies inversely with n, the number

of samples used.

When a time function f(t) is sampled by multiplying by
n-i

E 6(t - kT), then the spectrum of the sampled ftu_cbioi_
k=O

f(t) can be expressed as the convolution of the original

spectrum F(_) with the spectrum of the sampling impulses

as given by (4.2c). Thus

^ I
F(_o) =

O0

/FI oo-
mOO

oo si=(nT )
I exp -i -_- co nT

k=-_ -_--co - nkTr

J_ (_.3)

A

It is actually F(_O) which we are calculating by our

discrete Fourier transform. From (4.3), F(COo) is seen to

be a weighted average of the true values of F(co) in the

vicinity of _0'

Let us assume that the sampling rate is high enough so

that F(_) is essentially zero for -_/T _ _ _ _/T. This

is the Nyquist rate. Then the limits on the integration in

(4.3 may be changed as follows:

/  ecomesJ
-_ _=_O-_/T

(4._)
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A

Since we are interested in F(_0) only for

-_/T _< e0 -< T/T, the spectrum F(@ 0 -_) as shown in the

convolution in Fig. 8 will overlap with only the (sin x)/x

function centered at @ = O. Hence the summation in (%.3)

will consist only of one term. Consequently we can write

oo

n

: /
sin nT

de
nT
-- (13

2 (%.5

In summary, it has been shown that the output of a digital

spectrum analyzer computed using a finite number of samples

2.___
T

I

-Tr

TRA.SFO_.O.SA.PL,.O_U.CT.O.--

NSFORM OF

vv-_,-- : Q,I

2"n"
T

Fig. 8. CONVOLUTION OF F(co)

IMPULSE TRAIN.

WITH SPECTRUM OF SAMPLING
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A

will be an estimate F(_O) of the true value of F(_O). The

n_mber F(co0) obtained has been shown to be a weighted

average of the true values of F(_) in the vicinity of _0"

The weighting function or "passband characteristic" is a

(sin x)/x function whose width varies inversely with i-i,

the number of samples used.

C. Multiplicative Constants

In Eq. (4.5), F(_O) is a somewhat biased estimate of

F(_). Let's assume F(_) is roughly constant and equal to

F(_O) in the vicinity of _0; then Eq. (4.5) may be

simplified to

sin nT

nF(c°o)8_3 / exp(-i _ co) nT-_-coF( O) -- (4.6)

Carrying through the integration we find

., F(o_ 0 )
(4.7)

Hence the calculated value of F(_O) differs from the

true value by a multiplicative constant of i/(8_2_). This

multiplicative constant need not pose any problem depending

on what use is made of the calculated spectrum. For instance,

the digital spectrum may be reconverted to analog for an

oscilloscope display of amplitude vs frequency. In this case

the gain of the vertical amplifier of the oscilloscope may be

adjusted to compensate for the multiplicative constant.
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However, if a digital printout or other digital display

is desired, the multiplicative constant will prove harder to

deal with. The best solution in this case would probably be

to use an amplifier with gain 8_2T in front of the sampling

process.
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Chapter V

IMPROVING PASSBANDCHARACTERISTICS

A. Time-Domain Operations

In Eq. (_.5), the output of our digital spectrum analyzer

for _0 was expressed as a weighted average of the true

values of F(_) in the vicinity of _0" The weighting func-

tion is to our digital spectrum analyzer what the passband

characteristics are to an analog spectrum analyzer. As

expressed in Eq. (4.5) the passband of our digital spectr_

analyzer has the shape

nT

8_ exp -in _ (_.i)nT

Note that this is precisely I/(8_3T) times the transform of

the square envelope which we used to multiply the infinite

sampling impulse train in order to obtain a finite number of

sampling impulses.

This observation leads us to ask if we cannot modify the

passband characteristics of our digital spectrum analyzer by

changing the multiplying envelope. The answer is that indeed

we can. In particular, if we use an envelope h(t) which is

nT seconds wide, the output of our analyzer for co0 will be

F(_0)_ = _l f F(_o -_) H(_) d_ (5.2)
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where H(_) is the Fourier transform of h(t).

We would like H(_) to be infinitesimally narrow, i.e.,

an impulse. The only way this can be achieved is to make

h(t) infinitely wide. This, of course, is an impossibility

for it means we would need an infinitely large machine to

handle our infinite number of samples. The problem is analo-

gous to the problem of shaping the far-field pattern of an

antenna array by changing position and size of the array

elements.

Our primary purpose in modifying the envelope h(t) will

be to improve our resolution in the frequency domain [i.e.,

to make H(_) narrower]. Our secondary purpose will be to

eliminate spurious responses which occur when two adjacent

frequency components in the incoming signal are superimposed

by the integral of (5.2) and either reinforce or cancel each

other.

B. Easil_ Implemented Operations

Since we are doing our calculations digitally, certain

h(t) envelopes will be easier to achieve than others. In

antennas, for instance, the elements of an array might be

cosinusoidally weighted. Such a weighting would be difficult

to realize digitally. Other arrays might be density weighted,

which means that certain elements of the array are not driven

or used. This would be easy to realize digitally since it

merely means dropping some of the samples and replacing them

by zero in the calculation. Also, any h(t) in which the
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samples are weighted by powers of 2 are easily realized, as

this simply means shifting a binary number right or left by

the appropriate number of bits. Any combination of weighting

by zero and powers of 2 will be easy to realize digitally.

It is the purpose of this section to explore these h(t) and

examine their effect on the resolution and response of our

digital spectrum analyzer.

Let us then examine in more detail what sort of gains

may be realized by using an envelope h(t) which can be

achieved simply by shifting the bits of the samples. If we

digitize the inputs into p bits, then by shifting we can

effect weights of i, 1/2, I/4,...,I/(2P-2), I/(2P-I), and

0. Figure 9 illustrates a possible h(t) achieved using

these weights. It is easily seen that any envelopes of this

type may be decomposed into a sum of a number of rectangular

envelopes.

Since the Fourier transform is a linear operation, the

transform of the sum is equal to the sum of the transforms of

the individual rectangular envelopes. Consequently the com-

posite H(_) can be generated by adding together a number of

(sin x)/x functions of different magnitude and different

period.

In general, a rectangular envelope of height A, width

B, and whose center is at C, will have a transform:

AB exp(-i_C) sin(_oB/2)
 B'/z

(5.3)
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h(t) -

J

e_D

-_-i-

i

....i--i......

I
L i L l ,

........ 2

--_I14

-_---] 1/16

NT

t _

Fig. 9. TYPICAL h(t) ENVELOPE OBTAINED BY SHIFTING BITS
OF DIGITIZED DATA INPUT.

A sum of such rectangular envelopes will have a transform:

sin (_oBj/2 )

_AjBj exp(-imCj) _Bj//2 ' ' (5.g)
J

Let us confine our attention to envelopes which are symmetri-

cal about their centers, then the phase factor in (5.4) will

be the same for all j and may be brought outside the

summation.
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sin (_Bj/2)
exp(-i_C) I AjBj ' [oBj/2 (5.5)

J

.th
The factor A.B. is simply the area under the OJJ

We should note that Aj = i/2 J andrectangular envelope.

Bj. _<Bj+I. Referring to Fig. 9 it is easy to see that each

coefficient AkBk is smaller than or equal to the sum of all

the AjBj for j _ k + i. This observation puts limits on

the relative sizes of the various functions we are going to

sum together.

Let us attempt to get a better feeling for the process

that is occurring by working out the passband characteristics

for the envelope shown in Fig. 9. Evaluating (5.5) we obtain

16 T) {T sin 16 _Texp( -i_
\ IS _T

15 sin 15 _T
+ i--_T 15 _T

+ 7 T sin 14 _T + _ T sin 13 _T'I_ o_m '13 cot

6T sin 12 _T + lit sin ii _T_ (5 6)+
i2 _T 11 _T / "

The passband characteristics expressed in Eq. (5.6) are

plotted in Fig. i0 and can be compared to the passband

characteristics of the original rectangular h(t) which are

plotted in the same figure. The result is a passband which

is generally wider and lower than the original. Similar
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\
\
\
\

\

--I H(_u) I FOR SQUARE h(f) WINDOW WITH SAME NUMBER OF SAMPLESAS h(t) SHOWN IN FIG. 9

\

H(_)
T

15

\
\
\
\
\

I FOR h(t) WINDOW OF FIG. 9

Fig. i0. MAGNITUDE OF H(_) FOR AN EASILY MECHANIZED h(t).

results are obtained for other simply implemented h(t) which

require only a shifting of the bits of the input samples.

C. Frequency-Domain Operations

Some operations which prove difficult to implement in the

time domain may be much more simply performed in the frequency

domain. Suppose, for instance, that we simply add to each

frequency estimate the value of the two adjacent estimates

multiplied by a constant K. The estimate at _0 can be

written as
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n

--00

TIT - CO)
sin -_- (COO ,, -dec

(w0 -CO)

(5.7)

The adjacent estimates are centered at

be written as

_o +-(2Tr/n_) and can

co

+- _ f _(_)
--co

exp[-i _ (C°O + nT

sin -_- _0 +- n-_ - dec

nT ( 27r co)-T _o +n-Y -

(5.s)

Using the identity

e -iv = - i

we may express (5.8) as

o [ ]_F _o -+_ - 8_-"7_ F(_) e_p -i _ (_0

sin y C°O + n-%" - dec

, ii )nT (c°0 -- nm"Y- + 27r __

(5.LO)

Combining (5.7) and (5.10) yields
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oo

sin-9( o+
nT ] dco (5 ii)

- K nT 2_

_- (COO + nT---- co)

,%

F(%)The spectral estimate as given in (5.11) is seen

F(m) of the input weighted

by a passband characteristic which is the sum of three shifted

(sin x)/x type functions. Figure ii illustrates the three

(sin x)/x functions. For ease of illustration the complex

exponential (whose magnitude is one) has not been shown. The

value of K can be adjusted so that the two adjacent

(sin x)/x functions will partially cancel the sidelobes on

the central (sin x)/x function. Perini [196g] studied a

mathematically similar problem in the shaping of the far-field

patterns of linear antenna arrays.

Figures 12 through 14 show the combined passband charac-

teristic for several interesting values of K. Figure 12 is

for K = 0, which gives the original (sin x)/x passband.

Figure 13 is for K = -0.g26, which yields a zero at the peak

of the first sidelobe of the original passband. This choice

to be equal to the true spectra
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/

sin '-_" (_o-_)

n'r, +2w" .
sin 2 I_o -n-_-(_)

_ - K_-----_.---

Fig. ii. ADDITION OF THREE ADJACENT WEIGHTED SPECTRAL

ESTIMATES •

of K makes the close-ln sidelobes very small.

Figure 14 shows the passband for K = -0.5. This partic-

ular choice of K gives sidelobes which fall off as

i/(co0 _ _)3 rather than i/co0 - co. To show this we must

expand Eq. (5.11) using sin (x _ _) = - sin x:

n

._CO

(coo-
nT

7

i + K )K + coo - co 2v
2rr _ co coO + _ - coCOO - n-_ nT

dco (5.12)
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Fig. 12. PASSBAND FOR K = 0.
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Fig. 13. PASSBAND FOR K = -0.426.
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Fig. 14. PASSBANDFOR K = -0.5.
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Putting (5.12) over a common denominator gives

oo

n/ )]_(co 0) = _ F(co) exp -i -_--(coO - co

[ {2_2 ]
•,(2K + 1)(%- _)2 _ _, I

•L( o_ _ _ (% - _)J

sin _ (_0 - _)

nT

-T

dco (5.1.3)

If we now set K = -1/2 we obtain

oo

n / F(a)) exp[-i _ (co0- co)] sin nT - co)_- (coo

(})_(_o-_)s

2
7_

For co near coO' the (coO - co)3

can be written

2 nT _ CO)- _ 7- (coo

term is small and (5.14)

n

_(co0) _ _ / F(co)exp[-i _ (coO-co)]
--00

nT - Co)sin -_- (coo

nT

"T" (coo- cO)
dco

for I(})_(coo co)3J<<1"2(% - co)l

z_and K = - kD.zP)2

For _ far from coO,

(5.14) can be written

the _0 - cO term is negligible and
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co

--00

for

2

nT

sin -T -
do3

1
and K = - 7 (R.76_

Equation (5.16) explicitly points up the i/(_ 0 _ _)3 aprons

of the passband characteristic for K-- -1/2. Q.E.D.

The addition of F(_0) to K times the two adjacent

frequency estimates is an easily implemented modification and

has been shown above to result in substantially reduced side-

lobes in the passband. The special case of K : -1/2 is

especially easy to implement as no multiplication is needed.

The factor of 1/2 is achieved by hardwiring a shift of i bit.

This special case has been dubbed "harming" by Blackman and

Tukey [1959].

D. Equiyalent Time-Domain Operation

The summing in the frequency domain could be replaced by

an equivalent time-domain operation. As it turns out, such

an operation is far more complicated to implement from a

hardware standpoint. To find out what the equivalent time-

domain operation is, we first note that the summing of the

three (sin x)/x functions can be expressed as a convolution

of a single (sin x)/x function with three impulses. Expanding

the terms in brackets in (5.11) yields
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- K
_in_ (_o2_ _) sin_ (_o-_)

nT +

nT 2_ co -_ (0_0-T °_0 - n--F-

- K
2"ff - d,,))

nT 2_ _)-T (C_O + h"F -

/ [sin _ (_0 - _ - _),.] d__- [__(_-_)+_(_)__(_+_1]t _ (_o-_ _)
-oo

(5.x7)

Plugging (5.17) back into (5.11) gives

co

:_ _ [-_M(_o _)]f

[_ _ .]
2_] in -_-(co0 - _ - _)/

+ 4(_) - KSk_ + n'_/] nT
d_ dec

_(_o -_- n)
(5.18)

By reversing the order of integration and pulling out a

factor of exp(-i _ _) we obtain

(5.19)

Referring to (5.7), the inner integral of (5.19) is seen to

be (8_3)/n F(_O - _ )"

Consequently we find
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oo

o) :
_00

exp (-i nT (5.2o)

Equation (5.20) is in the form of a convolution in the fre-

quency domain which is equivalent to a multiplication in the

time domain by an h(t) window function whose transform is

given by

h(t) _---_2_{6(m) - K[5(co - _-.) +_2_ (co +

The window h(t)

exp _-inT -2-

(5.21)

then can be determined to be

2Tr (t nT)h(t) : I - 2K cos n-_ - -2-

: i + 2K cos 2 --it (5.22)
nT

Figure 15 shows the effect of this window function on the

input data samples for a K value of -0.426.

Realization of this increase in resolution by multiplying

the n input samples by the appropriate h(t) will require

n complex multiplications. Realization of the increase by

working in the frequency domain will require n complex

multipliers and 2n complex adders as shown in Fig. 16. How-

ever, if K is set at -1/2, then the multiplications can be

replaced by hardwired shifting and complementing and we are

left simply with 2n adders. Consequently, working in the
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2_'t
h(t) _---I - 2K cos

/ \

_t

SAMPLING t = n I"
IMPULSES

Fig. 15. TIME-DOMAIN WINDOW EQUIVALENT TO
WEIGHTED SUMMATION OF ADJACENT FREQUENCY-

SPECTRUM ESTIMATES.

frequency domain here is really only attractive if the value

of K can be set to -1/2 or some other easily realized con-

stant multiplier.

A new real-time, hardware-oriented algorithm is derived

in Chapter VIII. In using this algorithm the input is never

in a stationary array, and hence premultiplication by an

appropriate h(t) window is further complicated. It is for

this reason and for the reasons in the above paragraph that

we will choose to do our modifications in the frequency

domain at the output of the computation circuitry. We will

also choose a value of K = -1/2 for ease of implementation

as mentioned above.

shown in Fig. 17.
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n-
W

J

l.-
.J

n

DATA _ }

WORDS "'
rr
(3_

JE

TRANSFORM

" COMPUTATION

CIRCUITRY

n

FREQUENCY
SPECTRUM

ESTIMATES

a. Premultiplication by h(t) window

n

DATA

WORDS

TRANSFORM
COMPUTATION

CIRCUITRY

z

<i
:Ez
DO

or_.
,_ n-2

,., t _FREQUENCY
_o SPECTRUM
_'_ ESTIMATES

_0

,-.,,,j
rr
IJ.

b. Equivalent frequency-domain convolution

Fig. 16. EQUIVALENT TIME- AND FREQUENCY-DOMAIN OPERATION.

E. Double Hanning

A second hanning has been used by some researchers in

order to improve the resolution further. Let us call the

double-hanned signal F(_0)._ We can then write

47 SEL-67-099



A

F
15

-112

FI4 FI4
-I

F 13 FI3

^
F 12 FI2

A A

F II FII

^
F I0 FI 0

^
F 9 F9

^
F8 F8

^
F 7 F7

^
F 6 F6

A
A A

F 5 F5

A
A ^

F 4 F4

A
A A

F 3 F3

^ _
F 2 ; F2

F I FI

A

F0

Fig. 17. FLOW GRAPH FOR HANNING

OPERATION.
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A

F(_ol 2 nT -_$(_0+_) (5.23

Using Eq. (5.11) for F(_0) yields

F(c°0) : - [ - 2" nT

{ ^ ^( _) _( _)}i i F(_o) + _0 + fly - ZF _0 +- (5.24)-7 -7 n<

Collecting like terms

_(_o):_ _(_o _ nT

-_(_o+_) +_(_o+_) (5.25

A

We may further express F(_O) in terms of the true _(_),

yielding

s(ooo) = _ s(_) exp[-i _ (_0 - co)] [_
n T 4_

+
sin_ (_o 2_-co -_) 3

nT 2"n" 2(_0-_ - _-t
_i__ (_o-_)

(_o - _o)

+
nT( _)sin -_ co0 - a) +

nT 2_
-_-(co0 - co+ _-)

i
+_ J

@_ (5.26)

_9 SEL-67-099



From (5.26) we see that the double-banned spectral estimate

_(_0) has a passband characteristic which is the sum of

five shifted (sin x)/x-type functions. Since it was not

immediately obvious that this passband was going to be an

improvement over the single-harmed case, a computer program

was written to compute and plot this passband. The results

of this plot can be seen in Fig. 18.

Although the sidelobes do drop off more rapidly than the

single-harmed passband, the central peak has been made con-

siderably broader. The improvement in passband character-

istics in going from single hanning (Fig. 14) to double

banning (Fig. 18) is much less marked than is the improvement

in going from no banning (Fig. 12) to single hanning. Since

the windowing circuitry must be approximately doubled to

implement double hanning, it is felt that the single-hanned

frequency estimate is the best compromise.
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Fig. 18. PASSBANDACHIEVED BY HANNING TWICE.
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Chapter VI

HARDWAREIMPLEMENTATIONOF FOURIER TRANSFORMALGORITHM

A. Basic Functional Building Block

Let us now investigate the problems of mechanizing the

Cooley-Tukey algorithm. For n = 2m input samples the flow

chart of the calculations will contain m+l columns repre-

senting m stages of calculation plus the original sample

points. Each of the points in the (r+l) st column will be

th
the complex sum of one of the numbers in the r column

th
and another of the numbers in the r column multiplied by

a complex constant.

Generally speaking, all the numbers dealt with will have

a real part and an imaginary part. Hence all additions will,

in fact, be two additions (Real + Real; Imaginary + Imaginary)

and all multiplications will be four multiplications (Re × Re;

Re × Im; Im x Re; Im X Im).

th
Let us group together in the r column pairs of points

which differ only in the r th index. If we do this, we note

that each such pair of points affects only the corresponding

pair of points in the (r+l) st column. Furthermore, the

pair of points in the (r+l) st column depends on no other

th
points in the r column but this pair. This is a very

important observation because it allows us to isolate a small

functional block which is repeated throughout the calculation

circuitry.
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This observation also sets a lower limit on the number

of operations that must be performed in parallel; that is,

we must calculate the points in pairs. After each pair of

the (r+l) st column is calculated, the corresponding points
th

of the r column may be discarded and calculation of

another pair started. Hence, we must, as a minimum, provide

storage for n+2 complex numbers.

Figure 19 illustrates the flow chart of this basic func-

tional block described in the previous paragraph. We may

split the basic operation in half so that we will be calcu-

lating, for every point, the sum of one previous point and

one point multiplied by a constant according to Eq. (6.1).

F(Jo,...,Jr_l,km_r_l,...,ko )

= F(Jo,...,Jr_2,km_r,km_r_l,...,kO)]km_r= 0

F(Jo'''''Jr-2'km-r'km-r-l'''''ko) km-r=l
+

r)]
(6.1)

The value of the exponential constant is dependent only

on where we are in the overall calculation flow chart. The

fact that it is a constant will make the multiplying circuitry

simpler.

Since the multiplying constant has a magnitude of less

than one, as we move from one column to the next, the
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magnitude of the numbers will increase by less than a factor

of 2. Hence, as we move to the right each column will in

general require one more bit in its representation than did

the previous column. Consequently, if we begin with 2m

each q-bit samples, the spectrum calculated will contain 2m

words of q+m bits each.

B. Basic Functional Block Using 0nly One Multipliero

The relationship between the two multiplicative constants

needed can be seen in the basic functional block of Fig. 19.

Note specifically that the constant on the top path can be

written

exp[-i2_( 2-I + Jr_22

m 2 -3
+ _a.ir__2 + ... +

= exp[i2 Ijr22-2+ +j02r)]

The right-hand side of (6.2) is seen to be just the nega-

tive of the multiplicative constant on the downward-sloping

path. Hence Fig. 19 can be modified so that only one complex

multiplication is needed rather than the two required by

straightforward application of the flow graph. Figure 20

shows the modified basic functional block.

This modification reduces the total number of complex

multiplications for the complete flow chart from m2 m to

m2 m-I Since the majority of the computation time and
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circuitry is spent in multiplication, this simple modification

allows a savings of about one-half of the circuitry necessary.

C. Hardware Adders

The operations of addition and multiplication must be

implemented. A parallel binary adder of the appropriate

number of bits can be quite easily implemented using currently

available integrated circuits. Figure 21 illustrates a 12-bit

adder constructed from 4-bit adder integrated circuits which

are available commercially from Texas Instruments.

Bll B9 All A9

I.,o1.!,
IN

CARRY 211 _10 Z9 28

B7 B 5 A7 A 5 B 5 B I A3 A I

1"1"1 '1I l"l'°l  i-,,,
, I [ II

27 2e 25 24 23 2a 21 2o

Fig. 21. A 12-BIT STRAIGHT BINARY ADDER. All integrated
circuits are Texas Instruments 4-bit adder modules.

D. Hardware Multipliers

Multiplication of two binary numbers can be accomplished

by a shifting and adding procedure. When one of the numbers

is known ahead of time (as are the exponential constants),

the hardware may be greatly simplified. The simplification,
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however, makes one multiplier different from another and

hence increases the number of types of circuits needed.

Figure 22 shows one possible implementation of a 12-bit

straight binary multiplier. This is a completely general

I:_ ! _ ! ! !_ ! TI!i _:_

I _,,_,, _ _,e. A.e,, A..., ,_,S. A.e,, A.B,, A.B. _e. A,e, Aoeol
r'tCARRY 12-BIT STRAIGHT BINARY ADDER _1 I %

Yo xz

_..__... _

..__-., _

._.._....__

e X3

,D X s

e X?

e X I

el X I

- XlO

* )tit

Fig. 22. A 12-BIT STRAIGHT BINARY MULTIPLIER.
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circuit since each of the multiplicands x and y can be

any binary number. The building of a multiplier in this

fashion has in general not been economically feasible in the

past, and actually probably is not yet. However, as inte-

grated circuit technology progresses, this multiplier becomes

more and more attractive. For instance, at the present time

Texas Instruments is producing commercially a _-bit parallel

adder in a single integrated circuit chip. At the present

state of the art, then, the multiplier of Fig. 22 would

require something on the order of 72 integrated circuit chips

to implement with commercially available products. This number

could probably be cut in half through design of special-purpose

chips. It is not inconceivable that this complete circuit may

some day be implemented in a single chip.

E. Simplification of Multipliers

When the value of one of the multiplicands is known ahead

of time, the multiplier of Fig. 22 may be greatly simplified.

Knowing the values of x 0 through Xll will allow us to

eliminate all the AND gates and, on the average, half the

adders from Fig. 22. To prove this, note that if any x i

is I then we may eliminate the associated row of AND gates

and simply tie the Yi directly into the associated adder.

Further, if any x i is 0 we may eliminate both the

associated AND gates and the associated adder since the sum

of the adder is simply equal to the other input. The x i
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will on the average be half l's and half O's; hence on the

average we may eliminate half the adders.

Thus the necessary multipliers could be made using an

average of about 15-1/2 of the existing 4-bit adder chips

currently available from Texas Instruments. This is a

considerable savings over the previously mentioned 72 chips

per multiplier.

Since the numbers dealt with will be complex, every point

of the calculation will require four multiplications and two

additions. If there are 2m sample points, there will be

4m2m multiplications and 2m2m additions. If 12-bit numbers

are used as proposed, the results of the multiplications will

be 24-bit numbers which must be rounded off again to 12 bits

before we add. This will usually involve merely dropping the

12 least significant bits. The multipliers can be simplified

still further if these bits are not calculated at all, since

they will be dropped anyway.
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Chapter VII

SPEEDOF OPERATION

A. Calculation Time

The time required to perform the calculations will set

an upper limit on the sample rate and thus set an upper limit

on frequency response of our spectrum analyzer. It will be

instructive to work out an example to see what can be done

with currently available products. The Texas Instruments

4-bit adder has a carry propagation delay of 30 ns for 4 bits

or 90 ns for 12 bits. This is the longest path for the 12-bit

adder. The longest path for the multiplier is through the

90 ns of carry delay and down the average of 5-1/2 rows of

adders at about 50 ns each, then through another 90 ns of

carry delay for a total of 445 ns. Add to this the 90 ns of

the addition and we get about 545 ns for each column of the

calculation.

Using this value it is possible to derive Table i, which

relates the number of 12-bit samples used to the approximate

maximum sampling rate and consequently the highest frequency

estimate of the resulting digital spectrum analyzer. Note

that the calculation time varies with the number of columns

or the log of the number of samples. The calculation time

also increases roughly directly proportional to the number of

bits in the samples.
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Table i

NUMBEROF SAMPLESVS CALCULATION TIME AND MAXIMUMSAMPLE
RATE FOR 12-BIT SAMPLEWORDS(0.025 PERCENTACCURACY)

m
Number of

Samples (2 m)

i 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

i0 1,024

ll 2,048

12 4,096

13 8,192

14 16,384

Calculation
Time

0.545

1 .O9

i .635

2.18

2.73

3.27

3.81

4.36

4.91

5.45

6.00

6.54

7 .O8

7.63

Max imum

Sample
Rate

(kHz)

1840

918

612

458

367

306

262

229

204

184

167

153

141

131

Max imum

Frequency
Estimate

(kHz)

920

459

3O6

229

183

153

131

115

lO2

92

84

77

71

66

Referring to Table i, it should be noted that the maximum

sample rates are somewhat faster than the conversion rates of

currently available 12-bit A_D (analog to digital) converters

whose conversion times will be in the range of 20 to i00 _s.

This need not be a problem (except possibly a financial one)

since it should be an easy matter to use several "Sample and

Hold" amplifiers followed by several A/D converters, and then

use a digital multiplexer to present the digitized samples to

the calculator in the correct time sequence.
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The described implementation of a digital spectrum

analyzer is several orders of magnitude faster than other

schemes realized on digital computers (e.g., Weaver et al

[1966]; Cooley & Tukey [1965]; Larson & Singleton [1967];

Gentleman & Sande [1966]). It is this extra speed that

should make possible a practical real-time digital spectrum

analyzer. Whether or not the extra cost of a specially

constructed parallel arithmetic unit is "practical" will

depend on the particular application.

B. Pipelining

Some increases in speed may be made through use of a

technique known as "pipelining." In this technique, a second

set of samples is input into the calculator before the results

of the first set of data have come out the output end. In

this way the data sets will proceed in waves from input to

output in the calculator.

In general, the number of waves is limited by the differ-

ences in time delays along different paths in the calculation.

That is, the results will be meaningful only so long as one

wave does not overtake the wave in front of it or lag into

the wave behind it. Otherwise the results will become

scrambled and meaningless.

If all paths in the calculation required exactly the same

time, the calculation could be pipelined up to any desired

speed. Unfortunately it is a practical impossibility to make

all the paths the same time length. If, however, a stage of
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memory is inserted between each column of the calculation,

we can gain in speed by a factor of m for 2m samples.

Figure 23 shows how this would be accomplished.

CLOCK

t-
ic

INPUT
SAMPLES

m

C
A
L
C

C
K
T

OUTPUT
SAMPLES

Fig. 23. CALCULATION CIRCUITRY UTILIZING PIPELINING.

By clocking the storage registers and the input shift

register we can essentially make the delay along all paths

of the calculation constant. The delay will be equal to one

clock period times the number of columns in the calculation.

The clock period need only be long enough to allow for the

maximum time delay through a single column of the calculator.

This maximum delay would be about 820 ns for the multiplier
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and adder described earlier. Thus the clock could be run at

a 1.2 MHz rate regardless of the number of input samples used.

This in turn means a sample rate and output rate of 1.2 MHz.

The maximum frequency estimate then would be raised to

600 kHz. And all this in real time!

The higher sampling rate, of course, means that even

more sample and hold circuits, more A/D converters, and more

inputs to the digital multiplexer would be needed. Thus,

while the potential for high-speed operation exists, it is

very expensive to realize.
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Chapter VIII

REAL-TIME ALGORITHM

A. Real-Time Operation

When operating in real time we will run the input through

an analog-to-digital converter and store the results in a

shift register to be used as an input to the calculation

circuitry. As each new sample is brought in, all samples in

the register will be shifted down one position and the fre-

quency estimates will be recalculated.

When operating in this manner, the algorithm as described

in the previous chapters performs redundant calculations.

By modifying the algorithm to remove these redundancies in

real-time operation, it is possible to decrease the amount of

hardware necessary by approximately a factor of I/(log 2 n)

for n input samples.

B. Derivation of Real-Time Algorithm

Figure 24 illustrates the modified algorithm. The opera-

tions indicated in dashed lines between the first two columns

are among those that have been eliminated. Since the input

samples are being shifted one place each sample time, at any

time t the dashed operations would be calculating exactly

the same results that the solid operations calculated during

the previous sample time t - T. Consequently, rather than

repeat the calculation we may shift the results of the previ-

ous calculation into this register. Note that this is
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Fig. 24. MODIFIED ALGORITHM FOR REAL-TIME OPERATION.

possible only because the constant multipliers were the same

for both the solid and the dashed operations. Further study

of the flow chart of Fig. 5 will indicate that the complete

second column of this figure may be generated by shifting

downward the results in row 7 and row 15.

Similarly the results in the third column may be gener-

ated by shifting downward the results in rows 3, 7, ii, and

15. Continuing in this fashion through all the columns, we
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arrive at the much simplified algorithm shown in Fig. 24. By

using the single multiplier basic function block of Fig. 20,

the flow graph can be simplified further as shown in Fig. 25.

C. Hardware Requirements

Figure 25 requires one complex multiplier between

columns I and 2; two between columns 2 and 3; four between

columns 3 and 4; and so forth up to 2m-I between the last

two columns. The total number N of complex multipliers

needed is

N = i + 2 + 4 + 8 + ... + 2m-I (8.1)

This series can be brought into closed form as follows:

2N = 2 + 4 + 8 + ... + 2m-I + 2m

i + 2N - 2m = i + 2 + 4 + 8 + ... + 2m-I

(8.2)

= N (8.3)

Collecting terms yields N = 2m - i complex multipliers,

which amounts to a considerable savings in hardware over a

direct parallel implementation of the Cooley-Tukey algorithm

which would require N = m2 m complex multipliers.

The real-time algorithm of Fig. 25 can also be very easily

pipelined as mentioned in Chapter VII. In this case, then,

the shift registers would not represent an additional storage

register requirement but would merely be used in place of the

clocked registers shown in Fig. 23. The real-time algorithm,
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in fact, uses fewer registers than the original. Figure 23

will require (m+l) columns of 2m registers each for

(m+l)2 m registers.

f15

f14
rD

f15
rD

f12
D

fll
D

flo
D

f9

f8

r 0 -I r 4 -I
Ip

I r 0
f7 _'

r6 -I r7 -I ,A,
FI5

I F7

D

I_ AF3
FI5

I A

/%

F 9

F I

-I r4 -I r6 -I A
FI4

I F6

I FIO

I F2

r0 -I r4-I ,,_

I FI2
0 ^

q

O' I F4

I F8
0

I F0

Fig. 25. REAL-TIME ALGORITHM USING ONLY ONE MULTIPLIER
PER BASIC FUNCTION BLOCK.

The real-time algorithm will require 2m-I + I registers

in the first column; 2m-I + 2 registers in the secon6;

2m-I + 4

(m+l)st columns.

is given by

in the third; and so on up to

The total number R

2m in the mth and

of registers needed
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R = (re+l) 2m-I + i + 2 + _ + ... + 2m-2 + 2m-I + 2m-I

= (re+l) 2m-I + 2m - I + 2m-I

i
= 2m(_ m + 2) - i

which is less than the m2m needed for straightforward pipe-

lining of the Cooley-Tukey algorithm for all m _ _.

There is yet another great advantage of the real-time

algorithm that may not be immediately obvious. Specifically,

the advantage lies in the fact that only the first and last

stages of each shift register are looked at. This means that

cheaper types of shift registers may be used. For instance,

a simple delay line could be used as a shift register since

only the input and output are used. The delay line unfortu-

nately makes it virtually impossible to change sampling rates.

Although the delay line offers a large amount of storage

capacity at low cost, the problems of synchronizing its

operation with various sampling rates preclude its further

consideration.

In the area of clocked shift registers, there are several

choices. For example, a magnetic-core shift register can be

used since we don't have to look at all the intermediate

stages. The data in the first and last stages would be held

in flip-flop registers so that it would be available as inputs

to the multipliers and adders. The magnetic-core shift
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register is more easily adapted to changing sample rates

than is the delay line.

Another possibility is the integrated circuit (IC) shift

register, such as Philco's 100-bit MOS shift register in a

single TO-5 can. Use of this device is possible only because

the real-time algorithm does not require access to the inter-

mediate stages along the shift register string.

It is important to note that if it were necessary to have

access to the intermediate stages, the size of the IC package

would have to be almost I00 times larger! The size of these

packages is determined primarily by the number of inputs and

outputs necessary for the circuit. The IC chip itself is

usually far smaller than the package containing it.

The M0S shift register unfortunately has not only a 1.5 MHz

maximum clock rate, but also a 5 kHz minimum clock rate. The

clock-rate limitation stems from the fact that the device

employs M0S gate capacitance for temporary storage and conse-

quently will not operate at dc. Here again we would be sample-

rate limited.

Perhaps the best commercial integrated circuit for this

application at the present time would be an 8-bit T2L shift

register made by Texas Instruments. It is a serial-in,

serial-out unit that will operate from dc to 18 MHz, and

consequently will not be sample-rate limited. Also all shift

registers in the real-time algorithm of eight stages or more

can be divided evenly by 8.
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Future IC developments will undoubtedly produce longer

IC shift registers. Serial-in, serial-out units will be

developed first since they can be encased in current IC

packages. They are not subject to the same pin limitation

problems that large parallel-in, parallel-out shift regisbers

are. Since more can be squeezed into the same package, both

parts costs and wiring costs will be much less with the real-

time algorithm.
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Chapter IX

SINGLE AND MULTIPLE CHANNELFILTERS

A. Realization

The real-time algorithm may be used to realize single or

multiple channel filters up to n channels. These filters

may be realized simply by eliminating from the real-time

algorithm all the operations which do not lead to the fre-

quency estimates desired. The procedure is best illustrated

by an example. Figure 26 shows the derivation of a filter

for estimating FIO from the flow chart of the real-time

algorithm. The dashed lines indicate portions of the flow

graph which can be eliminated since they are isolated from

A

the FIO output.

It is obvious from this figure that any output or any

combination of outputs can be chosen. Two of these single

A

channel filters--F 0 and F8-- warrant special attention

because of their ease of implementation and their other

special features. Figure 27 shows the flow chart for FO,

which is the estimate of the dc content of the input signal.

Notice that the only multiplier used is r O. But r0 = I_

This means that F0 can be calculated using no multipliers

at all--only delay lines and adders are needed. Also, assum-

ing the input is real, all numbers in the calculations are

real rather than complex. The lack of multipliers and complex

A

numbers results in tremendous hardware savings in the F0

lowpass filter.
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Fig. 26. DERIVATION OF SINGLE-CHANNEL FILTER FOR FI0
FROM REAL-TIME ALGORITI4_N.

Since the spectrum is "folded" back on itself by the

A

sampling, the highest frequency estimate is F 8 rather than

FI5. Figure 28 shows the flow chart for F8. As with F O,

the only multiplication is by r O, or i. Hence the hardware

A

for calculating F8 also requires no multipliers or complex

numbers. Another advantage of the single channel filters is

that the resolution is readily increased simply by adding on
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another stage of shift register, multiplier, and adder at

the input end.
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Fig. 27. DIGITAL LOWPASS FILTER DERIVATION•

B •

for

Applications

As an example of the possible use of the bandpass filter

A

F8 we cite the following: Satellite-tracking ground
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Fig. 28. F8 PASSBAND FILTER DERIVATION.

stations as a rule derive their time information from a

central time reference source. The information is usually

sent out as a PDM (pulse duration modulation) waveform which

is used to amplitude-modulate a I kHz carrier. By setting

A

up the filter such that F8 occurs at i kHz, it should be
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possible to pick off the information in the modulating

envelope.

In an application such as this, a fixed sampling rate

would be used and costs could be cut further by using a delay

line in place of the shift register. A clocked register

would be used at the output of the delay line to furnish the

input to the adder. Thus the delay time of the line could

vary up to one clock period without causing an error in the

output.

Filters such as these may also find application in

analyzing data containing very low frequencies. Analog filters

become very large physically at frequencies of, say, I Hz and

below. Such frequencies are important in the areas of earth-

quakes and medicine. In medicine the EEG (electroencephalogram)

and the EKG (electrocardiogram) would be prime examples of

areas where frequencies below i Hz occur. Consequently they

are also areas in which digital filters such as described

above should be useful.
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Chapter X

DIGITAL SPECTRUMANALYZEROUTPUT

A. Cpmplex Sinusoidal Output

Up to this point we have spoken of the analyzer output as

though it were a constant. The fact is, of course, that each

output of the analyzer is a time series which represents a

running estimate of the spectral content of the input based

on the last n samples.

The time axis of the Fourier transform is fixed to the

transform circuitry and consequently moves with respect to

the input time waveform. Figure 29 illustrates the shifting

of the input past the data window of the transform circuitry.

= (n-I)i"

Fig. 29. SHIFTING OF f(t) PAST TRANSFORM CIRCUITRY.

At time t = (n-l)T the spectrum estimates are based on the

input samples at t = 0 through t = (n-l)T. Rather than
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A

calling this estimate F(_0) as we did before, let us now

refer to it as F(_0' t = (n-l)T).

At some later time t = (n-l)T + kT, the inputs used

will be f(kT) through f[(n-l)T + kT]. The transform of

the shifted input f( t - kT) and the transform of the sam-

pling function are shown in Fig. 30. The multiplication in

the time domain results in a convolution in the frequency

domain. The resulting spectrum can be expressed as

F(_O, t = (n-l)T + kT) = _ / F(c_) exp(-ikT_)

sin (%
nT

T (o% - _)

--- F(o_) exp (- ik'r_)
sie 9._ (WO__)

"-_(_0-=)

Fig. 30. DERIVATION OF F(_0' t : (n-l)T + kT).
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In the vicinity of _0' this can be approximated by

"" n f F( exp(-ikTc_O)F(coo't)--_ coo)

• exp[-i _ (_0- co)]

nT

sin -_- (_0 - _)

nT - GO)_- (coo

OGO

(lO.2)

The terms that don't depend on co can be brought outside

the integral.

n

F(co0,t) -- _ F(c°0) exp(-ikTco0)

nT

f -
sin _Z (_0 -co)

nT

T (_o - co)

(]CO

(10.3)

Carrying out the integration yields

F(c°O) exp{-i_o[t- (n-!)T] }

8_r2T
(lO.4)

It should be remembered that Eq. (10.4) was derived by assuming

that F(_) exp(-i_kT) was constant throughout the passband at

coO' Under this assumption, then, the output of the filter is

a real and an imaginary sinusoid, both of frequency coO" The

information we are seeking, namely F(GO0), is contained in

the envelopes of the sine waves.
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F(_0) itself is a complex number.

F(_0) = Fr + iFi, we may write

If we set

i
F[_0' t : (n-l)T + kT]-- _ (F r cos kT_ 0 + Fi sin kT_0)

i
+ _ (-F r sin kT_ 0 + Fi cos kT_0)

(lO.5)

Let us now take the magnitude squared of (10.5) for an

estimate of the power spectral density at _00.

IF[co 0 t = (n-l)T + kT] 12 _ 1 [F2r cos 2 (kToo0)'

+ 2Fr_i cos (k_o) sin (k_o) + F2 sinl

i 2+ . F sin kT_ 0 - 2FrF i cos kT_ 0
64_4T 2

sin kT_ 0 + F2 2 )i cos kT_ 0 (10.6)

Making use of the
in 2 2S X + COS X = l, and by collecting

terms, we can write

i 2

64_4 2 IF(_0) I (10.7)
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Note that the time dependency has dropped out of the right-

hand side of Eq. (10.7). Thus, while the voltage transform

outputs vary sinusoidally with time, the power spectrum

estimate is approximately constant with time. The rapid

change of the voltage transform should be expected since Zhe

voltage transform contains information about the phase of the

input relative to the time reference of the transform cir-

cuitry. Since the input is shifted past the transform

circuitry, its phase relative to the transform time reference

changes rapidly.

B. U_dating Frequency Estimates

When we calculate the spectral estimates, we always do so

on the basis of the last n input samples. When we recalcu-

late the estimates one sample period later, the calculations

are based on n-i of the original samples. That is, we drop

the oldest sample and add one new one and recalculate. Since

the majority of the calculation is based on the old samples,

it would seem that we are generating redundant information.

Can we not, in fact, generate the second set of estimates

simply by applying Eq. (10.4), with k = i, to the first set

of estimates? The answer is that this does indeed come pretty

close to predicting the second set of estimates. We may apply

(10.4) again to predict the third set of estimates; and again

to predict the fourth set; and so forth. As might be expected,

the further we predict, the greater the probable errors become.
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The source of the errors is our approximation that

F(_) exp(-ikT_) is essentially constant through the passband

of the filter. For k = i (predicting one sample period

ahead), the approximation is relatively good. As we increase

k (predicting further and further ahead), the term

exp(-ikT_) varies more and more rapidly with _. Conse-

quently our approximation (and our predictions) get worse

and worse.

C. FFe_uency, Com_gnents of Envelope_
i

Referring back to Eq. (I0.i) we see that F(_0,t) is the

output of a narrowband filter. Consequently it will contain

frequency components between _ - (A_/2) and _0 + (A_/2)

where A_ is the bandwidth of the filter. Equation (10.4)

tells us that F(_0,t) can also be written approximately as

an envelope F(_0)/$_2T times exp(-ikT_0). If we assume

that the envelope is slowly varying sinusoidally at a fre-

quency 8, we can write

F(c°0) _.Ae ikT8 + Be -ik<@ (I0.8)

The product of the envelope and the sinusoid can be written:

-ikTm 0 -ikTm0 ikT8 -ikT@ -ikT_0
F(_0) e _ he e + Be e

(lO.9)
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This can be compressed to

-ik  o
e -- Ae + Be (i0.i0)

Thus the product of a complex sinusoidal envelope and complex

exponential produces frequency components displaced +8 from

the _0 frequency of the exponential. Since no frequency

of F(_0,t) are further than _A_/2 away from thecomponents

center frequency _0' then the envelope F(_0)/8_2T must

contain no frequency components higher than A_/2. This

corresponds to a period of 4_/A_.

We can theoretically regain the envelope alone by multi-

plying the output of the filter by exp(ikT_0). Having done

this, the sampling theorem tells us we may extract all the

information in the envelope by sampling it twice every

period--i.e., at a time spacing of 2_/A_.

We defined A_ above as the bandwidth of the analyzer

channel outside of which there is zero transmission of fre-

quency components. By referring to the calculated passband

characteristics of Figs. 12, 13, and 14, and even the double-

hanning passband of Fig. 18, we can see that the passband

never falls off completely to zero. Consequently we cannot

put an absolute frequency limit on the envelope. However, we

can say that the frequency components beyond a certain point

become negligibly small.
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If we pick as our filter bandwidth the first zero crossing

of the (sin x)/x passband characteristic of Fig. 12, then

the bandwidth is given by

_Tr
a_ = n-_ (10.11)

Consequently the output envelope must be sampled at a period

of

27[ nT
a-S= -T (lO.12)

It should be remembered that (10.12) was derived by not using

the more standard half-power point definition of bandwidth.

By using this definition, we obtain approximately:

_-_-- nT (10.13)

Equation (10.13) states, in effect, that we need not look

at all the analyzer outputs after every input sample, but

rather, only once every n input samples.
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Chapter XI

TIME-SHARED REAL-TIME ALGORITHM

A. Derivation of Algorithm

In Chapter X we fotmd that the output of the Fourier

transform circuitry can be expressed as a complex slnusoid

with a slowly varying envelope. In order to reproduce the

envelope which carries information about F(_), we need look

at the outputs only once every n inputs. We are conse-

quently led to inquire whether or not we can reduce the hard-

ware requirements by calculating the outputs in rotation. By

this we mean calculating a different one of the outputs each

sample time so that in n sample times we have calculated

all n outputs. This process would then be repeated. Each

output calculated would be based on the set of the immediately

preceding n inputs, as before. Now, however, since the out-

puts are not calculated at the same time, they do not depend

on the same sample sets. Figure 31 shows a possible time

sequence of outputs and the input sample sets upon which they

are base_.

Let us refer back to Fig. 25. Note that in order to

calculate any one of the points in the output column, we must

calculate two consecutive points in the previous column.

These two points in turn require the calculation of four con-

secutive points in the column to the left. Also, it should

be noted that calculation of the two consecutive points cannot

begin until two sample times after the calculation of the _ur

SEL-67-099 86



consecutive points began in order to allow the first of the

four points to reach the end of its shift register.

A

FI5 I I
A

I I

FII _ I
A

F3 I
A

FI3 I
A

F5 I
A

F9 I
A

FI I
A

FI4 I
A

A

F_O I
A

F2 I
A

FI2 I
A
F4

I

I
A

FB
A

|

I I

n INPUT _ OUTPUT TIME

I

SAMPLES
A

OF F o ESTIMATE
BASED ON PREVIOUS

n INPUT SAMPLES

Fig. 31. TIME SEQUENCE OF OUTPUTS AND SAMPLE SETS
THEY DEPEND ON.

Similarly, the four points require the calculation of

eight consecutive points in the preceding column. Calculation

of the four points must be delayed four sample times from the

start of the eight consecutive point calculations to allow the

four-stage shift register to fill up. Information will be

taken from both ends of the four-stage shift register during

the next four sample times.
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Figure 32 is the flow graph of the real-time algorithm

modified so that each output is calculated only once every

n input samples. All numbers on this flow graph indicate

the sample time at which the operation takes place. All

multiplier constants have been left off for the sake of

simplicity. They are the same as those in Fig. 25.

8D

1,2,3,4,5,6,7,8,9,10,1 I, 12, 13, 14,15

9, I0,11 , 12,13,14,15,0,1,2,5,4,5,6,7

9,10,11,12,15,14,15 13,14,15

5,6,7,8,9, I0, II

2D

11,12,15

4D

9, I0, I I

7,8, 9

1,2,3,4,5,6,7 5,6,7

3,4,5

15,0,1

D

Figure 32 was derived by beginning at the right-hand

column with the sample times for the various outputs. We then
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work to the left, writing down the sample times at which the

inputs to the shift registers must be calculated. For in-
A

stance, F2 and FI0 are calculated at sample times 4 and 5.

The input to the shift register from which they are calculated

must be calculated at times 4 and 5, and also at time 3 so

that the output of the shift register will be meaningful at

time 4. Inputs and outputs of the next shift register to the

left must be available at times 3, 4, 5, 6, and 7, and since

the shift register is of length 2, at times i and 2 also. By

continuing in this fashion, the sample times at which each of

the points of Fig. 32 must be calculated can be obtained.

B. Hardware Reduction

Figure 32 can now be used to minimize the hardware re-

quired. Specifically, multiply-add operations which are not

performed at the same time can be performed by a single hard-

ware multiply-adder. For instance, a single multiply-adder

will suffice for all the operations in the last column.

In all previous columns, two multiply-adders are required

per column. In these columns, the top half of all function

blocks can be performed by one multiply-adder and the bottom

half by a second multiply-adder. This is possible because

the different calculations are performed during different

sample times. Thus a single hardware multiply-adder may be

time-shared among many branches of the flow graph.

Similar flow graphs may be constructed for any number of

samples. As long as the outputs are computed in order from
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one end of the flow graph to the other, only two multiply-

adders will be needed for each column.

using n data points will require only

multiply-adders.

Thus an analyzer

2 log 2 n complex

The multipliers now must be general-purpose multipliers.

Since we no longer are always using the same multiplying

constant, we cannot simplify the hardware as mentioned in

Chapter VI. Also an n-state counter must be employed to keep

track of which outputs are being computed and which multiplying

constant should be used. Also, the inputs to the multiply-

adders must be switched back and forth between the two shift

registers of the previous column.

A single binary cou_ter of log 2 n bits will be sufficient

to keep track of all operations. If the states of the counter

are decoded in normal binary fashion, the sample time numbers

of Fig. 32 will match the state numbers of the binary counter.

The frequency-estimate numbers may be obtained by connecting

a decode matrix to the outputs of the binary counter with the

bit order reversed. Figure 33 illustrates this timing scheme.

C Out ut Schemes

If it is desired to produce an oscilloscope output of

amplitude vs frequency, digital-to-analog converters may be

used as shown in Fig. 34. Since the output of the analyzer

is time-shared on a single multiply-adder, a D/A converter

may be hardwired to this output and used to control the verti-

cal deflection of the oscilloscope. Another D/A converter is
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4 I0
I? 1_,2

R 4

FREQUENCY
ESTIMATE
NUMBERS

TO
OUTPUT

' [__,4'5

N'28 I

TIME
SAMPLE

NUMBERS
TO

MULTIPLY-
ADDERS

SAMPLING
CLOCK

SAMPLE TIME COUNTER

Fig. 33. TIMING CIRCUITRY.

connected to the horizontal deflection input. The resulting

horizontal sweep will not be smooth but will jump around in

the order of the frequency-estimate outputs.

The oscilloscope provides a convenient way of monitoring

the continuously updated outputs of the real-time algorithm.

The oscilloscope output also eliminates the need for circuitry

to arrange the frequency estimates in a less jumbled order.
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COMPUTATION

CIRCUITRY

VERTICAL

l
HORIZONTAL

SAMPLE._J

CLOCK l

Fig. 34. OSCILLOSCOPE OUTPUT.

Most other useful output schemes will require an n-word

register into which the outputs of the analyzer can be ad-

dressed using the sample-time counter.

The output of the analyzer may be used directly as the

input to a digital computer for further processing in such

areas as speech recognition or ECG or EEG classification.

In such cases the analyzer output and frequency-estimate

number would be taken by the computer in parallel and the re-

ordering would take place as the analyzer output is being

stored in the computer memory.
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D. Multiplyin$ Constants

In the specialized multipliers of Chapter VI, the multi-

plying constants were built into our simplification of the

multipliers. Now that we are using general-purpose multi-

pliers, the constants must be stored elsewhere and called up

as they are required. The easiest way to do this is to use

"wired storage." The outputs of the sample-time counter will

be decoded and used to furnish appropriate combinations of

l's and O's to the multiplier inputs. The "appropriate"

combinations are determined ahead of time from the flow chart

of the calculation. Figure 35 illustrates how a typical

wired-storage configuration would look.

Since there will be two complex multipliers in each

column, four wired-storage circuits will be needed for each

column. This means a total of 4 log 2 n circuits for a

complete n-sample analyzer. This additional hardware require-

ment still is far less than the hardware required to produce

all n frequency estimates each sample time.

E. Outputs in Normal Order

Since we are calculating the frequency estimates in

rotation, we might inquire as to why we don't calculate them

in their normal order. The answer is that we can; however,

if we do so, we cannot reduce the hardware requirements as

much. This can be seen by referring to the flow graph of the

calculation in Fig. 36. This flow chart was derived exactly
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MULTIPLIER

x5

SAMPLE_]

CLOCK - I

SAMPLE TIME
COUNTER

Fig. 35. WIRED STORAGE FOR MULTIPLYING CONSTANTS.

as was the one in Fig. 32 except that the outputs F O, F I,

A

F2,..., F15 were assigned a different output sequence.

Beginning with these assigned sample times and working left,

we can determine when all other calculations in the flow

chart must be performed. We find that adjacent branches no
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8D

0,1,2,3,4,5,6,7,8,9,10, 11,12,13, 14, 15

0,1,2,3,4,5,6,7, 8,9,10,11,12,13,14, 15

2,3,10,110'

14,15,0, I, 2,3,4,5,6,
7,8,9, 10,11,12,13

2D

4D
1,2,9,10

2

3,4,11,12 _ _

13,14,15,0,l,2,3,4,5, ]'_ _ 12

6,7,8,9,,0,,,,,220 V- _ 4.

-,s,o,7,88
0

Fig. 36. FLOW CHART FOR FREQUENCY OUTPUTS IN NORMAL ORDER.

longer have sample times in common and thus the number of

sample times grows much more rapidly as we progress to the

left. The effect of this rapid growth can be easily seen in

Fig. 36. As before, the last column requires only one

multiply-adder. In the first column back we still need only

two multiply-adders because the top four operations may be

grouped together, and the bottom four grouped together, with
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each group being performed by a single multiply-adder. In

the second column back, however, the operations must all be

performed continuously and hence four multiply-adders are

needed.

When the frequency estimates are output in the normal

order, adjacent branches of the computation flow graph do not

have any sample times in common. Each operation in the last

column will be performed once every n samples. Each opera-

tion in the first column back must be performed four times

for every n samples. In general, each operation in the

th 22rr column back must be performed times for every n

samples.

If we have n = 210 samples, the complete flow chart

would have i0 columns. Every operation in the fifth column

back (r : 5) would have to be performed 22r : 210 times

for every 210 sample times. Thus all operations in the

first five columns would have to be performed continuously

and the number of multiply-adders in these columns could not

be reduced. The last five columns will require 16 + 8 + 4 +

2 + i : 31 multiply-adders, whereas the first five columns

will require 32 + 16 + 8 + 4 + 2 : 62 multiply-adders.

Thus for a sample size of 210 points, outputting the

frequency estimates in normal order will require a total of

93 multiply-adders. However, outputting them in the Jumbled

order of Fig. 32 will require only 20 multiply-adders.
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F. Passband Shaping

Time-sharing the multiply-adders to produce only one

frequency estimate per sample time has been shown to result

in a tremendous savings in hardware. However, passband

shaping in the frequency domain is now going to prove more

difficult.

There are several reasons for the difficulties. The most

obvious is that now we can work with only one estimate at a

time. This problem is easily (and expensively) dealt with by

furnishing n words of storage for the estimates.

The second problem is that since the estimates occur at

different times, their relative phases are not the same as

they would be if the estimates occurred at the same time.

Equation (i0._) tells us that each estimate may be viewed as

a vector rotating at the center frequency of its passband.

Figure 37 illustrates such an interpretation of the estimates.

REAL PART

IMAGINARY PART

A

Fo ^
F,

F 2

^

F7

kF3 A A

(_5 °a6

Fig. 37. PHASE VARIATIONS OF FREQUENCY SPECTRUM ESTIMATES.
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In order to bring one estimate F(_0,tl) taken at t I, up

to correct phase relationship with another estimate F(_l,t2)

taken at t 2, it would be necessary to rotate the first

by the correct amount, i.e., to multiply F(_o,tl)estimate

by exp[-i_0(t 2 - tl)l. This multiplication is messy at best

and requires a good deal of hardware.

The problem is made worse by the fact that the time

spacing between the output of adjacent frequency estimates

is not the same for all sets of estimates. If we are to

correct the phase of 2n estimates to be used in hanning, we

will need to do 2n additional complex multiplications. This

will require two multipliers and considerable indexing and

sequencing circuitry since each multiplier will have to choose

between n inputs and n multiplying constants.

When the multiplying is all done, we still have only pre-

dictions of the estimates. The prediction is based on a

sample set which only partially overlaps the set on which the

estimate would be calculated. In some cases the overlap is

only one or two samples out of n. Thus, if the statistics

of the input are time-varying the predictions will be virtu-

ally useless.

There is also some uncertainty in the rate of rotation

of the estimates since their passbands are of finite width

A_. Thus the uncertainty in the phase of the prediction is

of the order of _(A_o/2)kT, where k is the number of

samples ahead that we are predicting. Again using the half-
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power bandwidth, we find that our uncertainty in the phase

for predicting n samples ahead is one full revolution.

2_+ nT : + ny ynT -- (ll.1)

Thus even for stationary input signals the predictions will

be of questionable significance.

G. Example Using Estimate Updatin_

To illustrate the problems which may arise in trying to

update estimates even with signals which are stationary, let

us work through the following example. Let us assume we want

A

to update previous estimates of F2 and

hann them with the "present" estimate of

Fig. 33, the present is sample time 12.

A

F4 in order to

A

F 3. Referring to
A A

F 2 and F 4 will

have to be updated by 8 and i0 sample times, respectively.

The harmed estimate would be given by

F 3 = _ [ F2 exp(-i_28T) + F3 - F 4 exp(-i_410T)

(ll.2)

Let us use a simple cosine of a frequency midway between

and _4 for an input. The cosine can then be expressed

exp[i _3 _ _4)t i(_3[ p ,
cos( '_3 2 _°41t : ' '" ( ..... ] +2 exp[- + _41t ]

(ll.3)
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The true spectrum of the input then will be two real impulses

of area 1/2 placed at _(_3 + _4 )/2" This is illustrated in

Fig. 38, along with the passband magnitudes of the filters

at _2' _3' and _4" The outputs of the filters can be

computed using Eq. (i0.i). The integrals drop out easily

since F(_) is an impulse.

Fig. 38. COSINE OF FREQUENCY
DOMAIN.

(_3 + _4 )/2 IN THE FREQUENCY

The output of the filter at _3 is given by
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Remembering that the spacing between adjacent frequency

estimates is 2_/nT, we have

-_- c°9 2 = 2 nT : T (i1.5)

Substituting (11.5) into (11.4) yields

9(_3,t) = n 1
8_3 2 2 exp i v/2 '

(11.6)

Simplifying still further gives

in exp ikT • ' (ii 7)
F(_3,t) : 8_4 2 •

Replacing kT by t - (n-l)T gives

A inF(_3't) = - 87 exp -i 2 [t - (n-l)_]}
(11.8)

Similarly, the output of the filter at _% is found to be

^ in -i [t - (n-1)_]
F(_%,t) = 8_-_ exp '2

(11.9)

For the filter at _2 we find

24_ exp -i 2 [t - (n-1)T] (11.10)

Note that all three estimates rotate at the input frequency

rather than at their center frequency. If all three estimates
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were available concurrently, we could simply hann them as

mentioned earlier to yield

A

^ i _^F(_°3,t) = - _ _(_2 't) + F(_3,t) - F(_4,t) (Ii.ii)

Using Eqs. (11.8), (11.9), and (ii.i0), we can write

in in in exp -i 2-- t
(n-l)<]}

= - _ exp -i 2 [t - (n-l)T]
(11.12)

Equation (11.12) gives the correctly hanned output. Unfortu-

nately, when the hardware is time-shared we cannot perform

this simple operation since all three estimates are not

available at the same time.

The previous estimates for F2 and F 4 may be updated
^

so that they may be hanned with F 3 according to Eq. (11.2).

Equation (11.2) may be expanded by making use of the expres-

sions derived in Eqs. (11.8), (11.9), and (ii.i0) as follows:

I $(_2' t - 8T) exp(-ic_28T)

+ F(co3,t) - _. F(co4, t - 10T) exp(-i_410T)

(11.13)

Expanding F(co2, t - 8T)

A

and F(_4, t - lOT) yields

F(co2, t - 8T) = - _ exp -i [t - 8T - (n-1)T]

(1L.14)
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F(_ 4, t - in -i , [t
lOT) = 8--_ exp 2

]
- i0< - (n-l)<]_

)
(11.15)

Putting (11.14) and (11.15) back into (11.13) gives

F(_3,t ) = _-12%_4in exp -i It - (n-1)T]

_ _°3,+ co4
exp[-iST (_2 '2 _)]

exp -i ' '2'

I in -i

- [8--_ exp 2

• exp[-i 10T (oo4
(11.16)

Collecting like terms yields

F(co B ,t) = in exp -i ST co2 - , ' '2 -

4
16_ 8

• exp -i 2'

Equation (11.17) differs from the correctly harmed esti-

mate of Eq. (11.12). The difference is due to the fact that

the estimates were rotated at their center frequency to update

them rather than at the correct frequency (_3 + _4)/2" The
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result is an error in the relative phases of the components

of the hanned estimate. In this particular example the phase

angle errors are

'2 =

2 = - IT

(11.18a)

(ll.18b)

The effect of these relative phase errors is shown graphi-

cally in Fig. 39. Both hanned estimates--the one correctly

done and the one done by updating--rotate at the frequency of

the input cosine wave. However, their magnitudes are drasti-

cally different as shown in Fig. 39.

2

/ / USING
/' /'CALCULATED

//USING UPDATED OUTPUTS

Fig. 39. EXAMPLE OF RELATIVE PHASE ERRORS IN HANNED
ESTIMATES USING UPDATING.
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This example demonstrates quite nicely that, even if the

input is stationary, trying to update previous frequency

estimates by rotating them at their center frequency may lead

to gross errors. It is for this reason that the author feels

that if passband shaping is to be done in the frequency domain,

it must be done using estimates which are calculated at the

same time, not estimates which have been rotated to update

them.

H. Algorithm Modification To Permit Hanning

As a consequence of the above problems involved with up-

dating old estimates, we are led to considering calculating

several estimates each sample time rather than one. Figure _0

was constructed by assigning the same output times for the

frequency estimates as was found most efficient in Fig. 32.

Then the diagram was modified such that, for every frequency

estimate, the two adjacent frequency estimates were calculated

at the same time. This was done so that three adjacent out-

puts would be available concurrently to permit hanning. Work-

ing backward as before, sample times were determined for all

other operations.

The result of starting with three sample times instead of

one is that there is considerably more duplication of sample

times in the various branches of the flow graph. Consequently,

fewer branches may be grouped together and performed by a

single hardware multiply-adder.
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O, 1,2,3,4,5,6,7, 13,14,15,
CONTINUOUS 9,10,11,12,13,14,15 0,1,5,6,7

.... '1_15

F7

' / \ 1,2,3,4, _J_f FII

/ \ ,,z,3,5,6, 2,12,4 %
/ _ 7o9,10_11 7,11,3 ^
"O,I,2,3,4,5,6,7, 8, qr_ _ FI3
9,10,11,13,14,15 I \ /OT/", ,,,

2°t/X _ S,l_'_2 Fs

t\/

I, 2, 3,5,6,7, 8, 5,6,7,9, I0, 4,8,0

9,10,11,12,13,14,15 11,13,14,15 15,7,11 _114

CONTINUOUS _ ^

F6
^

40 F,o

F2

/ _ 10,11,12,13/I,3,13 ^
0,1,2,3,5,6,7, 8, '1_ _ FI2

9,10,,1,12,13,14,1S 201 -,_</-u_
! / \ io,2,1z '_4

IS,O,I,7o _ 1_/

8,0,15

Fig. 40. COMPUTATION FLOW GRAPH TO BE USED WITH HANNING

(OUTPUTS IN JUMBLED ORDER).

It was decided to try another output order in hopes of

achieving more efficient operation. For this purpose Fig. 41

was constructed assuming a normal order for the frequency

A

estimates; that is, F 0 is desired at sample time O; F I at

time i; F 2 at 2; etc. Each estimate has been calculated

three consecutive times so that it may be used in harming

with the estimate before it and the estimate after it.
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CONTINUOUS

CONTINUOUS

CONTI NUOUS

CONTINUOUS

CONTINUOUS

CONTINUOUS

13,14,15,0,
5,6,7, 8 14,15,0

FI 5

6,7,8 F7
,A.

9,10 FII
1,2,3,4 ^

F 3

FI3

4,5,6 F5

F97,8,9,10,
15,0, 1,2 D

0,1,2 FI
/%

FI4

/%

5,6,7 F6
/%

FIO8,9,1001 I,
0,1,2,:5 D /%

F2
10,11,12,13, 1,2,3
2,5,4,5 /I,12,L3 /%

_ FI2
/%

F4

/ _..7,8,9 ^
6,7,8,9, _l'X. _" F8

14,15,0,1 u_ /%
15,0,1 F0

Fig. 41. COMPUTATION FLOW GRkPH TO BE USED WITH HANNING

(OUTPUTSZNNORMALORDER).

A greater savings in hardware is realized from Fig. 41

than from Fig. 40. In the latter figure the three estimate

calculation times were not consecutive; consequently in the

first column to the left, three additional calculation times

were needed in order to load the shift registers. In Fig. 41

only two additional calculation times are needed.
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In analyzing Fig. 41 we note that each operation in the

last column is performed in a string of three consecutive

times. Sample times for operations in the same box are n/2

apart. In the first column back each operation is performed

in two strings of four consecutive sample times. The spacing

between strings is n/2

same box are n/4 away.

In general, in the

sample times. Other strings in the

th
r row back, operations will be

performed in strings of length as given in Eq. (11.19).

String length = L = 3 + i + 2 + 4 + ... + 2r-I

= L = 3 + 2r - i = 2 + 2r (11.19)

The number of strings N is given by

The strings will be spaced

N=2 r

n/2 r apart.

(11.2o)

The other operation

in the same box will have similar strings spaced n/2 r apart

and offset from these strings by n/2 r+l. There will be no

overlapping of sample times within the box as long as

2 + 2r -< n__ (11.21)
2r+l

Since n = 2m we have

2r+2 + 22r+l _ 2m (11.22)
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We can make use of the fact that m is an integer and write

22r+l < 2m (11.23)

Stating it another way, for an m-column flow graph we may use

a single multiply-adder for the operations on the top and

bottom of each box in the (m/2)+l st column. Furthermore,

all operations which are generated from each of these boxes

will require only one multiply-adder per column. For Fig. 41,

then, the top and bottom of each box in column 3 may be per-

formed by time-sharing a single multiply-adder. Also, the

two boxes in column 4, which are generated from the outputs

of the top box in column 3, may be implemented by time-sharing

a single hardware multiply-adder.

The (m/2) th column will contain 2m/2 boxes, or 2m

multiply-adders. Using the single multiplier per box realiza-

tion of Fig. 20, this number may be cut to 2m/2 multipliers

and 2m adders. Thus the total number M of multipliers

can be held to

m
M = i + 2 + 4 + ... + 2m/2 + [ 2m/2

(m )2m/2: _ + 2 - l (ll.2_)

Equation (11.2%) then gives an upper limit on the number of

multipliers that will be needed to produce an output suitable

for hanning, given any number n = 2m of samples.

The operation grouping mentioned above is still not as

efficient as it can be, as is evident from Fig. 41. According
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to Eq. (11.24) we can hold the number of multiply-adders in

column 4 to 2m/2 = 22 = 4. However, if we look at the

sample-time numbers in this column, we see that no number

appears more than three times. This means that we need never

perform more than three multiply-adds simultaneously, and

hence we need only three hardware multiply-adders to implement

this last column.

In order to get most efficient operation grouping we must

group so that each multiply-adder is always working each

sample time. For instance, the multiply-adder which is used

to calculate FI5 during sample times 14, 15, and 0 should

be started off on the calculation of F2 during sample times

i, 2, 3. During sample times 4, 5, 6 this multiply-adder

will be used to calculate FS" Continuing in this fashion

we find that we do not return to our starting point until

3n sample times later when this multiply-adder has been used

to calculate all n of the frequency estimates. In the last

column we had operations to be performed in strings of three

consecutive sample times. Since we had 16 such strings, it

took 3 x 16 = 48 sample times to return to the original

starting point.

In the first column back, there are still 16 strings but

now they are 4 sample times long. In the second column back,

there will still be 16 strings but they will be 6 sample times

long to allow time to fill up the shift registers.

In the right-hand columns, the minimum number of multiply-
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adders necessary will be equal to the number of sample times

in the strings. This is true since the number of strings

remains constant at n and the number of total operations in

a column in n sample times is equal to the number of strings

multiplied by the number of sample times in the string. In

the left-hand columns the minimum number of multiply-adders

will be

M = 2r (11.25)

where r is the column number.

In the right-hand columns we have

M = 3 + (i + 2 + 4 + ... + 2m-r-l)

= 3 + (2m-r - i)

= 2 + 2m-r (11.26)

The crossover point occurs where r = m/2. Hence, the first

columns will run continuously with a total number of multiply-

adders given by

2 + 4 + ... + 2m/2 = 2(2m/2 - i) (11.27)

The last m/2 columns will run time-shared with a total

number of multiply-adders given by

m

25+

r=_l

2m-r = m + 2m/2 - i (i1.28)
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Thus the minimum total number of multiply-adders needed to

produce three simultaneous frequency estimates suitable for

hanning is

2(2 m/2 - 1) + m + 2m'/2 - 1

= 3 " 2 m/2 + m - 3

= 3(2 m/2 - l) + m (11.29)

Thus, if hanning is desired it is seen that the number of

multiply-adders grows much more rapidly than the 2m rate

necessary for u_hanned signals.
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Chapter XII

SUMMARY AND SUGGESTIONS

A. Summary

This research has developed a new algorithm for spectral

analysis in real time. This new algorithm is intended for

implementation by special-purpose circuitry using currently

available integrated circuits. Maximum sampling rates above

i MHz can be realized in continuous real-time operation.

This is much faster than any other existing algorithm can

operate.

A closed-form analytical expression has been developed

for the passband characteristics of the discrete Fourier

transform operation. This expression was used to evaluate in

detail the effectiveness of several time-domain and frequency-

domain operations aimed at improving the passband character-

istics.

A hardware design has been presented which makes use of

certain novel features of this new real-time algorithm. Among

these features is the use of shift registers in which only the

inputs and outputs are available. This permits use of very

long integrated circuit shift registers in very small packages

since very few inputs and outputs are required. This feature

would not be an advantage in realizing this algorithm on a

general-purpose computer, but it definitely is for realizing

it in special-purpose hardware.
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B. Suggestions for Further Research

A number of areas exist where it appears that further

research would be profitable. For example, it should be

possible to combine two consecutive frequency estimates at

any one frequency to obtain another estimate for this fre-

quency which would be based on 2n rather than n input

samples. Consequently this new frequency estimate should

have a passband which is only half as wide as those of the

original estimates.

Another possibility is the use of the spectrum analyzer

as a digital frequency synthesizer. Notice that if we put an

A

impulse into the analyzer, F0 will output n samples of

dc. F I will output n samples (one complete cycle) of a

complex exponential (sines and cosines). F 2 will output two

cycles; F3, three cycles; and so forth. After n samples

all outputs return to zero. If impulses are input once every

n sample times, the output will be continuous sine waves

whose periods are submultiples of nT.

The time-shared algorithm computes only one frequency

estimate every sample time. Hence operations in the frequency

domain for improving the passband characteristics are diffi-

cult. The author feels that hardware computation of several

frequency estimates concurrently is economically unattractive.

If the frequency estimates are to be operated on further in a

computer after the fact, it may be reasonable to take two

consecutive estimates for any given frequency and use these
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to interpolate somehow to get estimates at all sample times

in between. Them with this complete set of estimates, pass-

band shaping could be done after the fact. Interpolation is

discussed further in Appendix B.
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Appendix A

CONVOLUTIONTHEOREM

The Fourier transform and its inverse as used in this

study are given by

F(co) : / f(t) e -i°_t dt (A.I)

i / F(a)) eic°t dco (A 2)f(t): _

The transform of a product fl(t) f2(t) is then

FiF2(co) = / fl(t) f2(t) e -i°°t dt (A.3)

Let us express fl(t)

inverse transforms•

and f2(t) in terms of their

]F1F2(co) : _-_ F l(co I) e d_ 1

/• F2 (co2) e

Rearranging the order of integration yields

SEL -67 -099
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m_ m_

exp[i(_Ul+CO2-_)t ] dt dco2 dcuI
mOO

(A.5)
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The inside integral over t is identically zero except

where el + _2 - _ = O, where it gives

oo

f exp[i(_l+_2-_)t] dt = 27r$(_i+co2-_ )
(A.6)

Then

I

FzF2(oo) = _ f Fl(°' 1)

oo

J" Fa(%) _(%+%-o_) d% _oI

(A.7)

I

FiF2(_o) = >--_- f F 1(%) F2(_-co l) c]% (A.8)

Equation (A.8) expresses the convolution theorem that the

transform of a product is the convolution of the individual

spectra.

The convolution of two functions is often written in

operational notation as

fl(x) (9 f2(x)= f fl(X-y)f2(y)dy (A.9)
--00

Using the notation of (A.9) and using a double-headed

arrow to indicate the taking of a transform we may write

fl (t ) -_---_- Fl(CO )

f2(t) _ F2(co )

i
rl(t ) %(t)-------_ Fl(_) ® F2(_) (A.zo)
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In a similar manner we can obtain

fl (t) (_ f2(t) _FI((O ) F2(co) (A.ii)
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Appendix B

INTERPOLATION

The time-shared real-time algorithm produces each fre-

quency estimate only once for every n input samples. We

have argued that, by looking at only every nth output for

a given frequency, we can obtain all the information that is

present at that frequency. Or to put it another way--if we

have two consecutive estimates (which are n sample times

apart), we can interpolate in some fashion to obtain estimates

for all sample times in between.

From Eq. (i0.i) we can express the time-varying output of

any frequency estimate as

A nf {F(_o,t) : -- F(_) exp -i_[t
8_-3

- (n-l)T]}

[ nT ] sin _ (m0 - m)
•exp -i -_- (co0 - co) nT - co)_- (_o

(B.I)

At a time nT seconds later the estimate will be

^ n f F(_)exp{-i_[tF(m0, t + nT) = 87
+ nT - (n-l)T]}

• exp[-i _ (co0 - co)]

nT - CO)sin -_- (co0

nT
_- (_oo - _)

d(1)

(B.2)
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If we assume that the input is a sinusoid that falls

within the 3 dB passband of the filter, then both the input

and output will be of a frequency _0 Z _/nT. The input will

be a simple real sinusoid of this frequency, and the output

will be a complex exponential which rotates at this frequency.

Between t and t + nT the output will rotate Wont _

radians. Recalling that _0 = J2_/nT, we see that the out-

put rotates J complete revolutions + 1/2 revolution. The

rotation of the output is illustrated in Fig. 42.

REAL

IMAGINARY

A A

F(_o,_ /4 F(,,,o,'+k_-)

I//.i / / \

IZ// |,_, 1 /

Fig. 42. ROTATION OF FREQUENCY ESTIMATE OUTPUT.

We can use the computed outputs at times t and t + nT

to interpolate and obtain an output estimate for some time

t + kT in between. We will simply interpolate linearly both
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the magnitude and angle of the output.

the magnitude

Doing so yields for

I$(_o, t + k_)l = I_(_o,t)l + n-_'k_[ i_(_o, t + n_)l - I_(c_o,t) 1]

n n-k I_(_o,t)l + _k i_(COO' t + nT)l (B.3)

The angle of the interpolated output is given by

^ kT
LF(_0, t + kT) = LF(_0,t) + _-_ [_0nT +£ F(_ 0, t + nT)

- tg(_o,t) ]

n
- k_^ k _$( t + nT) + _0kTF(_o't) + _ _0'n

(B.4)

It should be remembered that the angle of Eq. (B.4) was

arrived at by assuming that the input sinusoid fell within the

3 dB passband of the _0 filter. If it does not, then the

angle of the interpolated frequency estimate will be incorrect.

Since the interpolated output must pass through the points

A

F(_o,t ) and F(_0, t + nT), the angle at time t + nT can

vary only by an integral number of revolutions. Consequently,

at time t + kT the possible errors in angle are

k
k 6v k+ 2_ _.., + 4"rr _., + _, ...

Let us use Eq. (I0.i) to express the interpolated output

in terms of the true spectrum.
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I_(%, t + k_)l n - k
n

- F(_) exp[-i _ (_0 - c_)]

_I, %z (% _ _)

DT - _)-T (_o
d_u

k n

/ F(_) exp(-InT_) exp[-i _ (_0 - _)]

sin _ (_0 - _)

DT . _)-T (Wo

n_k 

ki/+ _ F(cD) exp[-_. P-_ (c% - c_)]

,jLo

_%T.%T'(_o('"°__)-_)_ (B.5)

It should be noted at this point that the interpolated magni-

tude of the output as given by Eq. (B.5) is obtained by a

nonlinear operation on the input. This means that if we put

in a signal which is the sum of two sinusoids, the output

will not be simply the sum of the individual responses to the

sinusolds. Consequently we cannot define a passband charac-

teristic for the interpolated output as we did for the com-

puted outputs. We can, however, use a single cosine wave to

test and partially define the frequency response of the inter-

polated output. For a cosine wave of frequency e I we have

F(_): _-_(_- %) + _-_(_+ el) (B.6)
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Inserting (B.6) into (B.5) yields

IF(_o,t + k_)l= nS_2-k e_p[-i_ (_o- _l)] n_.r(_o- _i)

+ exp[-i _ (a)0 + C)l)] +

sin_z (_o- _l)k _p[-i_ (_o+ _l)]....." -
+ _ n: " _I)_- (_o

sinD{_(_o+ _i)
+ exp[-i _ (co0 - c_I)] 'nT ' ' '

In the vicinity of _0 we have

sin _ (_0 -,_l)_i

s____'_(_ +%)-I << I + _I)]-"T o _p[-i_ (<_o _ (_o-%-) 1
_p[-i _ (% - _l)] --_ (% + _i) I

(B.Sa)

sln _ (_0 + _i) I << lexP[-i _ (_0" _i)] - nT ,_ _ U_l) |

l_xp[-i_(%+_i )]-__(%+_I) _ -_ o

(B.Sb)

Consequently, near _0 we can write

^ n

IF(_o, t + l<_)l--8-_ nT

-Y (_o - _l)

(B.9)

Similarly, near -_0 we have

n
sin +el)

_-(_o + _i)

(B.IO)
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Figure 43 illustrates this magnitude "passband characteristic."

It should be remembered, as mentioned above, that the

interpolated output is the result of a nonlinear operation.

Consequently a true passband characteristic cannot be defined

for it. Figure 43, then, should be thought of only as a first-

order approximation to a passband characteristic.

- _0

Fig. 43. MAGNITUDE "PASSBAND CHARACTERISTIC" OF

INTERPOLATED OUTPUT.

SEL-67-099 124



BIBLIOGRAPHY

Allen, J. L., "The Theory of Array Antennas," Technical
Report No. 323, M.I.T. Lincoln Laboratory, Cambridge,
Mass., 25 Jul 1963.

Aseltine, J. A., Transform Method in Linear System Analysis,
McGraw-Hill Book ComPany, New York, 195_.

Bergland, G. D., and H. W. Hale, "Digital Real-Time Spectral

" IEEE Trans Electronic Cgmputerg, EC-I_, 2,Analysis,

Apr 1967.

Bingham, C., M. D. Godfrey, and J. W. Tukey, "Modern Tech-

niques of Power Spectrum Estimation," IEEE Trans. Audio
and Electroacoustics, AU-15, 2, Jun 19_7.

Blackman, R. B., and J. W. Tukey, The Measurement of Power

Spectra, Dover Book Company, New York, 1959.

Bogert, B. P., and E. Parzen, "Informal Comments on the Uses

of Power Spectrum Analysis," IEEE Trans. Audio and
Electroacoustics, AU-15, 2, Jun 1967.

Bracewell, R. M., The Fourier Transform and Its Applications,
McGraw-Hill Book Company, New York, 19_5.

Chu, T., Digital Computer Design Fundamentals, McGraw-Hill

Book Combahy, New York, 19bN.

Cooley, J. W., P. A. W. Lewis, and P. D. Welch, "Historical

Notes on the Fast Fourier Transform," IEEE Trans. Audio

and Electroacoustics, AU-15, 2, Jun 1967a.

Cooley, J. W., P. A. W. Lewis, and P. D. Welch, "Application

of the Fast Fourier Transform to Computation of Fourier

Integrals, Fourier Series, and Convolution Integrals,"

IEEE Trans. Audio and Electroacoustics, AU-15, 2, Jun
196'7b.

Cooley, J. W., and J. W. Tukey, "An Algorithm for the Machine

Calculation of Complex Fourier Series," Math. Computation,

19, 90, Apr 1965.

Daley, F. D., Jr., "Analog-to-Digital Conversion Techniques,"

Electro-Technolo_y, May 1967.

Flanagan, J. L., "Spectrum Analysis in Speech Coding," IEEE
Trans. Audio and Electroacoustics, AU-15, 2, Ju_ 19-_-_.

125 SEL-67-099



G-AE Subcommittee on Measurement Concepts, "What Is the Fast
Fourier Transform?" IEEE Trans. Audio and Electro-

acoustics, AU-15, 2, Jun 19_7.

Gentleman, W. M., and G. Sande, "Fast Fourier Transforms--

for Fun and Profit," AFIPS Fall Joint Computer Conf.
Proc., 29, Spartan Books, Washington, D.C., '1906','pp.

Helms, H. D., "Fast Fourier Transform Method of Computing

Difference Equations and Simulating Filters," IEEE
Trans. Audio and Electroacoustics, AU-15, 2, J_---T967.

Lanczos, C., Applied ANalysis , Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1964.'

Larson, A. G., and R. C. Singleton, "Real-Time Spectral

Analysis on a Small General-Purpose Computer," AFIPS

Fall Joint Computer Conf., Anaheim, Calif., 14-1-_v

1967, to be published in vol. 31 proceedings.

Maling, G. C., Jr., W. T. Morrey, and W. W. Lang, "Digital

Determination of Third-Octave and Full Octave Spectra

of Acoustical Noise, IEEE Trans. Audio and Electro-

acoustic 9, AU-I______5,2, Ju_ 19_7.

Mason, J. J., and H. J. Zimmerman, Electronic Circuits,

Signals, anJ" Systems, John Wiley & Sons, New York, 1960.

Perini, J., "Side-Lobe Reduction Beam Shifting, IEEE Trans.

Antennas and Propagation, AP-12, 6, Nov 1964, pp. 791-
792.

Phister, M., Jr., Logical Design of Digital Computers, John
Wiley & Sons, New York, 1958.

"ASingleton, R.C., Method for Computing the Fast Fourier

Transform with Auxiliary Memory and Limited High-Speed

Storage," IEEE Trans. Audio and Electroacoustics,.. AU-15,
2, Jun 1967.

Singleton, R, C., "On Computing the Fast Fourier Transform,"

Research Memorandum, Mathematical Sciences Department,

Stanford Research Institute, Menlo Park, Calif., Jul
1967.

Singleton, R. C., and T. C. Poulter, "Spectral Analysis of

the Call of the Male Killer Whale," IEEE Trans. Audio

and Electroacousti.c9 , AU-15, 2, Jun 1967.

SEL-67-099 126



"An Introduction to Time Series Analysis,Sloane, E. A.,
Time/Data Corporation, Palo Alto, Calif., Mar 1967.

Weaver, C. S., P. E. Mantey, R. W. Lawrence, and C. A. Cole,
"Digital Spectrum Analyzers," Report SU-SEL-66-059
(TR 1809/1810-1), Stanford Electronics Laboratories,
Stanford, Calif., Jun 1966.

Welch, L. R., "Computation of Finite Fourier Series," JPL
Space Programs Summary No. 37-37, IV, Jet Propulsion
Laboratory, Pasadena, Calif., Jan 966.

Welch, P. D., "The Use of the Fast Fourier Transform for the
Estimation of Power Spectra: A Method Based on Time
Averaging over Short, Modified Periodograms," IEEE
Trans ,. Audio and Electroacousticg, AU-15, 2, J_--T967.

127 SEL-67-099


